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PREFACE

This bock iz a conselidation of the tremendous
amount of work done on the subject during
World War II by innumerable investigators. It
may De used as & basic text on aviation fire con-
trol principles for use in the training of officers
in the military academies, in oranance courses
of Reserve Giflcers’ Training FPrograms at uni-
versities and colleges, and in indoctrination
courses at Armed Forces line schools. It also
may be used to great advantage by scientista
and engineers engaged in research and develop-
ment in the field of aviation fire control in mili-
tary establishments and in the laboratories of
academic or industrial inatitutions under the
auspices nf the government,

The text presupposes & knowledge by the
reader of the mathematies taught in the uaual
undergradi.ate college caleulus course, A fami.
liarity with vector analysis also is deairable in
tollowing the development of the theory but is
not essential to an understanding of the prin.
ciples and the coneclusions. The main vector
operations employed in this text are defined and
briefly explained in Appendix A.

The specialized nomenclature and notation
asdopted in this book represent a deliberate
attempt at much-needed standsardization in this
branch of military sclence and eonsaiderable
effort has been expended in endeavoring to
harmonize the conflicting opinions and usages
encountered among the various principals and
pioneers. The commonly accepted standard
mathematical symbolization has been adhered
to generally and any deviation rigorously de-
fined. Numerous diagrams and examples have
bzen freely included to illustrate important
concepts.

It is to be noted that this book does not, as s
good text book should, contain problems the
solution of which is designed to impress upon
the student the principles expounded. The omis-
sion i3 partly motivated by expedience but is
mainly the resuit of the authors’ opinion that
the Instructors using the book as a text would

be in the best position to formulate problema
commensuraie with students’ requirements and
avaliable time. It ig hoped that such nrahlams
can eventually be compiled, to provide a . -quel
to this volume,

This text, lixe most comprehensive text books,

includes the work of meny contributors to the

theory. Althcugh the authors are among the
list of contributors, their present role is chiefly
that of expositors. In the exercise of this func-
tion, it is impracticable .o make apecitic acknowl-
edgment of the contributiona of the large
number of scientists who played a part in the
development of the theory of aviation fire
control, since most of their work was done, and
its publication remains, under military security
regulations which restrict dissemination of the
information. It is, accordingly, with regret that
only passive credit can be accorded these anony-
mous scientists who contributed so much both
to the theory and the military applications, and
whose original work has been “borrowed” in
writing this hook.

It is poasible, however, to give credit to those
who gave direct ald in the preparation of this
book. Thus, the authors gratefully acknowledge
their indebtedness to their associates in the
Research Department at the Naval Ordnance
Plant in Indianapolis for their criticisms and
suggeations and to the officials in the Bureau of
Ordnance for their encouragement and cooperas-
tion. In particular, the authors are grateful to
Dr. L. E. Ward of the Naval Ordnance Test
Station at Invokern, California, and Dr. Martha
Cox of the Naval Ordnance Plant, Indianapolis,
who contributed much to the original manu-
script. They also are indebted to Mrs. Mary
Kelso and Mrs. Nannie Twineham who did most
of the computational work and to Mrs. Janet
Edwards and Mrs, Eunice Stultz who prepared
the manuscript.

J. F. HEYDA.
K. L. NIELSEN.
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Chapter |
AEROBALLISTICS

PART 1.

.l Introduction

In order to aim a projectile toward a point 80
that it will ¢ollide with a target at that point, it
{8 iacessary to know the motion of the projectile
es it travels the required distance to the point.
Balliatics is the acience which {a concerned with
the motion of projectiles. 1t is, therefore, appro-
priate to begin the theory of fire control with a
consideration of ballistics, The theory of bal-
listica i usually separated into two distinct
parts:

~ax1) Interior ballistics, which is concerned
with the motion of the projectile while
it is still in the bore of the gun.

(2) Exterior ballistics, which is concerned
with the motion of the projectile after
it leavas the muztle.

Although no discussion can be complete without
considering both parts, in the theory of fire
control we are primarily interested in exterior
ballistics.

In fire control theory the term projectile may
refer to any missile such as a bullet, rocket,
bomb, ete., which is projected at a target. The
projecting machanism will henceforth be called
the gun. Eirce the motion of & projectils de-
pends upon many factors such as its shape, size,
weight, Initis]l and subsequent velocities, ete.,
any general theory of the motion of projectiles
must be specialized for particular projectiles.
The ¢learsat approach is to develop the theory
for bullets and make the necessary changes for
rockets, bombs, and other projectiles.

A detailed treatment of the theory of bal-
listics iz bevond the scope of this book. This
chepter will consider only the fundamental] prin-
ciples and will indicate methods for the determ-
ination of the neceasary data. Since this book
is primarily concerned with airborne fire control,
all computations will be apecialized to aerial
gunnery and the ballistics for aerial gunnery
will henceforth be termed Aeroballistics.

REVIEW CF FUNDAMENTALS

.2 The Coordinate Systems

In order to describe the motion of a projectile
it is necessary 1o have a refarence coordinate
svatem. Let X, YV, Z be a right-hand eset of
mutually orthogonal axes with their origin at
the muzzle of the gun and such that the (X,Y)-
plane is Horizonts! and the Z«4xis points ver-
tically downward. This rectangular coordtmte
system is shown in figure 2.

0 > X

Y 4
Figure 2. — Coordingte Syrem

If the gun s mounted in & moving alseraft,
this rectangular coordinate system Ly thea mov.
ing with the gun and {ts axes can be defised
more closely as follows:

the X.axis coincides with the Armament
Datum Line and ‘s pesitive

forward;
the Y.axis coincides with the sirgraft's
aummmuwmm

the starboard wing; i 7"

the Z-axis coincides with the aireraft ves-
tical axis and is positive down-

ward. Rt o2t

The motion of the projectile can be dessetbed
in terms of its (X,Y,Z) coordinates. Howeber,
if the gun is moving it also is necessary to hawve
a coordinate system which is fixed in the air
mass at the instant of fire. Let =, 1, 5 be a set
of axes parallel to X, Y, Z but at rest {n the alr
mass and such that the origins of the two
systems coincide at the instant of profectils
release. For a gun located on the surface of the.
earth, the (z,u)-plane is tengent to the esarth
at the origin and is often called the datom plana.

L
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It is convenient to have still a third set of
restangular axes, ¢ o, J, moving with the gun
and such that:

¢ 13 along the gun bore axis:

5 i8 in 8 vertical plane through the gun
bore axis and directed away from the
ground; and,

{ is in a horizontal plane and directed so
that the ordered set [¢ 75, {] forms a
right-handed system of coordinates.

All three coordinate systems are shown in

f figure 3. The airplane is assumed to be flying
in a horizontal plane and the angle of attack of
the Armament Datum Line is ignored. The
restrictions imposed by these assumptions will
be discussed in section 1.9, Aerial Gunnery.

The above choice of systems of coordinate
axes differs from the usual choice employved in
surface ballistica. However, it coincides with
the adopted standards in the dizcussions of air-
craft theories and, since we are primarily con-
cerned with aeroballistics, it is thought to be
an advantageous system, It iz hoped that this
change of notation will rot cause too much
confusion for the student of ballistics,

2

o o e - o

Figure 3. — Coordinate Systems

I.3 The Trajectory

The trajectory is the curve in space traced
by the center of gravity of the projectile as it
moves through the air. The origin of the trajec-
tory is the position of the centei of gravity of
the projectile at the instant of release. The
tangent to the trajectory at its origin is the line
of departure, and the vertical plane through
the line of departure is the plane of departure.
The angle that the line of departure makes with
the horizontal is the initial angle of inclination
of the trajectory and is also called the angle of
departure; it is denoted by 4.

If the coordinates of the center of gravity of
the projectile are specified uniquely at any time ¢
after release, the trajectory is completely de-
scribed. Thus the trajectorv is defined by

X=Xt)

Y=Yt

Z2=2Z(t)
where Xrt). Y(t), Z:t: denote functions of
time t. These functions must, of course, be zero
when t = 0. The coordinates of the center of
gravity of the projectile may be expressed in
terms of the coordinate svstems (X, Y, Z) or
(¢, . {J. but, for reference to inertial space,
these coordinastes must be ‘ransformed to the
space coordinates r, vy, 2.

oot BN weusca B sy SN eomnet SRR oncnan SRR svasvn SN wonncy BN sovnans BN ot SN St
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0=5

B T fo=0
/T |
R 3 2,

6 | \
Ly .

(a) FIELD ARTILLERY
FIRE

b) ANTIAIRCRAFT

—— xr

(c) HORIZONTAL
FLIGHT BOMBING

FIRE

Figure 4. — Trojectoriss

In genersa), there are four factors which de-
termine the trajectory:
(&) The position of the origin,
(b) the conditions of projection,
(¢) the ballistic characteristics of the pro-
jectile, and
{d) the characteristics
which it passes.
The projections on the plane of departure of
three typical trajectories are illustrated in
figure 4, where (a) shows field artillery fire,
(b) antiaircraft fire, and (¢) horizontal flight
bombing.
1f we limit our attention to the plane of
departure and consider it to be coincident with
the r, z-plane, the following quantities are often
referred to as the elements of the trajectory.
O — the crigin.
— the point of impact or the point of
burst.
S — the summit of the trajectory.
OS — the ascending branch.
SEB — the descending branch.
OB — the slant range.
8, — the initial angle of inclination.
r, — the horizontal range.
z, — the altitude of impact.

of the air through

{t i3 to be noted that in antiaircraft fire the
projectile usually bursts before the summit s
reached and thus the entire trajectory is in the
ascending branch. In horizontal bombing, the
summit ig the origin of the trajectory and the
entire trajectory is in the descending branch.

bits O - 5.3

e o e ——

Figure 4 shows only the projections on the
plane of departure, taken to be the (r, z)-plane
tor these illustrations. Actually, the trajectory
may not lle entirely in this plane but also may
have a projection in the (z,y)-plane. The y
value at the point of impact, y, is called the
deflection and that part of it which {s not due
to the wind is called drift. The three-dimensional
picture is illustrated in figure 5.

|.4 The General Problem of the Trajectory

The calculation of the trajectory of a projec-
tile of given characteristics under given initial
conditionz forms the primary problem of ex-
terior ballistics. In order to state the problem
specifically let us consider a sistionary gun and
let the gun bore axis le iu “he (z,2)-plane. Let
us further adopt the following notation.

(r.y, 2) = Coordinates of the center of
gravity of the projectile at
any time t.
(z., v., 2,) -= initial values; ie., at t =0.
g, — initia angle of inclination,
angle from r-azts to the line
of departure.
r, = initial velocity of the projec-
tile.
r. = components of the projectile
velocity in the directions of

Vs Uy

the coordinate axes at any
time 1.

—m et

——
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Figure 6. — Piane of Yaw

are used to determine the constants of integra-
tion. However, the determination of the force
components is not & simple matter and requires,
in fact, approximate methods.

For the sake of simplicity in future work, the
following notational convention is made.

Convention: A dot placed above any variaple

denotes the derivative of that

variable with respect to time; two

dota denote the second derivative

with respect to time, etc. Thus,
as ... a4

y ¥ = :
at

at
i.5 The Force Systam

A projectile is generally 2 solid of revolution
which has an axis of aymmetry, or such a body

with symmetrically placed fins; this axis of
symmetry i3 referred to as the axis of the
projectile. A projectile will move through the
air with its axis at an angle 8 with the direction
of motion; this angle is called the angle of yaw.
The plane which includes the axis of the projec-
tile and the tangent to the trajectory is called
the plane of vaw. This plane makes an angle v,
called the angle of orientation, with the vertical
plane through the tangent to the trajectory.
See figure 6.

Let O be the location of the center of gravity
and P the location of the center of pressure. The
center of pressure i3 the point at which the
resultant of the aerodynamic forces is applied,

The following forces are acting qn (h&-DIQIShbME - . -

and are shown in figure 7.

5

T
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HORIZONTAL REFERENCE LINE

W
Figure 7. — Forces Acting on a Projectile

W = the weight of the projectile, acting at
the center of gravity; it has ita line
of action parallel to the vertical plane
through the gun bore axis and thus
has no z or y components since the
ry-plane is taken to be horizontal. Its
components are, therefere, 0, O, mg.

R =& retardstion force acting on the pro-
jectile due to the resistance of the
astmosphere. The line of action of this
air resistance is considered to lie in
the plane of yaw and has ita origin
at the center of pressure which is
usually ahead of the center of gravity.
The force R iz decomposed into two
components D and L.

D =the drag or head resistance. This force
originates at the center of pressure
and has s direction paralle! and oppo-
gite to the direction of motion.

L =the cross wind force. This force orig-
inates at the center of pressure and
is directed perpendicular to the direc-
tion of motion. In aerodynamics this
ie the usual lift force.

It is well known from the principles of me-
chanics that the forces acting ¢n a rigid body
may be replaced by a gingle resultant force with
a certain line of action and a couple tending to
cause rotation about this line of action. Here,
the resultant force is R and its line of action is
in the plane of vaw. The couple 1s very small

ard often neglected. However, due to the fact
that the center of preasure, P, is ahead of the
center of gravity, O, there exists an overturning
moment M of R about O. This moment, M, is
caused by the component of R which is in the
plane of yaw and perpendicular to the axis of
the projectile. This component is usually called
the normal force and iz denoted by N. The
motnent arm is the distance OP,

mg sin §

D777

P A /777777

mg

/

Figure 8 — The force System of a Top

I—-‘—-ﬂ[:]
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2.V,
(1d) ¥ =

where V, is the muzzle velocity and n is the
number of calibers for one turn of the rifling.
Caliber i» used here as a unit of length equal
to the diametar of the gun bore, d. The stability
factor for a projectile is then given by -

AV,

' BKpnd'V?
and & > for 1 stable motion. If # < 1, the flight
of the projectile becomes erratic and is very

similar to the “‘wobbling” of & top aa its motion
oseomes unstable. The stability factor, o, is a

(18) &=

~dimensionless quantity.

1t is to be noted that the overturning moment
is & funetion cf the angle of yaw and becomes
saro if the yaw s zero. It has Loen determined
exparimentally that the yaw near the gun
refults from the clearatice of the projectile in
the bore and tends to dampen out in time. At

continues to point tq - na right so that
the plmo of yaw i appioximately horisomtal
and the orlantation angle is nearly 80°, Since
the cross wind force L lies in the plane of ysw
and the projectile points to the right of the
trajectory, L will push the projectile to the right
and produce the phenomenon of drift.

For large angles of departure, the angle of
yaw bacomes greater and the cross wind foree
has appreciable components along sall three co-
ordinate axes.

Extensive measurements under conditions for
which the cress wind force can be assumed to
be perpendicular to the X axis have shown that
sin & cen be approximated by

ANgepa 6

(16) 8in = —--—"
Kypd'V?

*See Chapter 5.
8

where 6 is the angle of Irclination of the tan

to the trajactcry. The stability of & pm;ﬁ%
is usually usurod by making the spin N suft-
clently large. However, equation (1.6) places s

warning not to make N too large since an in-
crease in N increases the yaw.

1.7 The Eauvations of Metien

A form of the equations of motion of the
projsctile can be obtained by substituting the
components of the forces into (1.2). The couple
which tands to cause a rotation about the line
of action of R will be negleeted. The magnitudes
of D and L are given by equations (1.8). The
directions of D and L can be obtainsd from
figure 7. D is parallel and oppoaite to the dirse-
tjon of motion. The camponants of —D are then
given by its magnitude times the direction
cosines of the line of motion. Since the vector
V coincides in direction with the line of motion,
these direction cosines may be writtan,

v, v, v,
) (] m 4
1% 1% 14
80 that the components of D are
Y, v, V.
_’D _'_’ _D —_, md D m—
14 1%

The general direction of L depends upon the
angle of orientation, y. However, for projectiles
which have their angles of departure less than
about 45°, the croas wind force may be assumed
to be in the same direction as the Y-axis. Under
these assumptions the equations of motion then
become

o V.
mz=-—-D——.
v
(1.7) my = _D1_:+ L;

mE:-f-D

v,
-+ mg.
Vv

If we now approximate cos 4 in equation
(1.6) by V./V, we can substitute (1.6) into
(1.3) and obtain
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g KL V'
(18) L=AN — —_—
d Ky V?
The substitution of (1.8) into (1.7) then gives
in units of mass, length, and time.
Koad'V

2= —_—V,

m

. Kopd®V AN ¢

19))5 = — 2tV (AN O
" m d

KpodtV
™

This system of differential equations must
be handled by approximate methods. However,
before discussing such methods, it is appropriate
at this point to stop and consider two factors
which enter into the conaideration of the above
system. The first of these is the atmosphere.
The forost apd the moment depend upon the
wind and the air denaity. The wind components
W, #, snd &, are detarmined as functions of
tha xititede whieh, for guns locatad on the
ground, is a distance along s. Tha density a cAn
be determinsd by pressure and temperature
msasurements; however, it is usually obtained
from an assumed standard structure of the

K.V,
Ke V!

V' 'i'-ﬂ

£ =

t= KD/KD,

and in eflect provides an average correction to
the drag coefficient of the standard projectile.
A new conatant C, called the ballisiic coefficient,
is now defined as

w g

C o e S —
A
and this factor is used in equation (1.5).

In practice, the form factor ¢ and the drag
coefficient K, are seldom determined. Actually,
the ballistic coeficient, C, is determined from
test firings which relate the performance of the
projectile to that of the standard projectile to
whieh it {s moat similar,

1.8 The Siacci Method*

This method modifies the differential egua-
tions of motion 8o that it becomes possible to
solve them In terms of quadratures. The modi-
fication consiats in aasuming a constant average
value for the air density and introducing a

atmosphere. The standard atructure assumes
t the density is an exponential function of
the altitude,

Pe == gy 8

where p, is the reference density, taken to he
Q7518 1b/ft*, and A is a constant equal to
0000818 par foot.”

The second factor for consideration arises
from the manner in which the drag coefficient
K, is determined. K, is usually found aa a fune-
tion of V/a for a given projectile shape, by
messurements on a projectile at zero yaw, The
drag function itself is determined by test firings
of a standard projectile, The performance of &
given projeccile which differs from the atandard
projectile may then be estimated by the intro-
duction of a form factor, 1, which compares the
given projec?ile with the standard one, If the
drag coefficient for the standard projectile is
denoted by K, , the form factor is defined by

*We have changed the unite from mass to pounds.

paeudo velncity u, defined as the ve | projec-
tion of the remaining velocity upon lne of
de _ The re velocity e actual

velocity of the projectile at any point on the
trajectory,
It ix eanily seen from figure 9 that

{(110) wecsd,=veosforu=uveosd sac b,

If the plane of departure is in the (z, £)-plane,
then we also have

U=uv,86, Or v, =t ooth,.

A drag functiom for a standard projectile of
a given type may be determined experimentally
as a function of the remaining velocity. Under
conditions of no wind (V =v) we may then
write
{(1.11) F) =K

and the first equation of (1.9) becomgs

.. . P‘
(1.12) r=v,= ——F(v)v,.
C (v)

*For a mors detailed discussion of the Siacci me<hod,
zee any standard text book on ballisties.
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From the above definition of x we have
v, =% 002§,
do, = dxoosd,,

80 that

(1.14) 2 _Fv)v,

* a

3=-——-0.m0.=—-
de

or

i Cooced,
(L1§) ~w= -~
[

aF(v)
i1 now the Biaccl assumption is made that
pof(¥) cAm B replaced by a0 (w), equation

(1.18) then becomes

Comt, du
(1-3:9 4&;-, ~
ua nﬁi"& wlagtaied. The integral

. m‘;_ j

Gix)

1

is called the Siacci space function and is evaln.
ated and tabulated for a range of predetermined
values of u and initial conditions.

8imilarly, three other functions may be ob-
teined, the inclinaiion function (), the dti-
tude function A (1) and the time function T
These functions are completely defined By

29
I/(u) = -
WG (w)
(W)
(118){ A' () = —
G (%)
T‘(u) = -
ul(w)

and given initial values, The prime denotes the
derivative with respect to w.

PLANE OF DEPARTURE

Figure 9. — Pieudo Yelocity
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AERQOBALLISTICS

PART 2.
1.9 Aerial Gunnery

This book is primarily concerned with the
firing of projectiles from aircraft in flight. The
fact that the gun is moving through the air in
a specified direction and with an appreciable
velocity adds further ccmplications to tne prob-
lem. On the other hand, projectiles fired from

Y

THE BALLISTICS OF AERIAL GJNNERY

an aircraft move only over relatively short
ranges and the maximum ordinate of the tra-
jectery is not too great. This ensbles one to
ignore the change of the density during the
flight of the projectile and also to ignore the
drift.

Figure 10 illustrates the general situation
for aerial gunnery under the assumption that

Figure 10. — Aeroballistics
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the airplane iz flving a straight-line unacceler-
ated course in & horizontal plane. Should the
sirplane maneuver, due account must be taken
of the dive, bank, and vaw angles of the airplane
and of whatever accelerations may be present.
The path of the projectile can atill be computed;
however, the force compenents along the axes
of a chosen coordinate avstemn would involve the
above mentioned angles. Present day flring
tables are computed with the above assumptions
aind the maneuvering of the airplane ia consid-
ered in the sighting problem, Consequently, we
ghall limit our baliistic discussion to that pic-
tured in figure 10,

Let

A, be the azimuth angle of the gun bore
measured in the (X, Y)-plane from X
through Y

Z, be the genith engle of the gun bore;

E, be the elevation angle of the gun bore
measured positively from the horiton.
tal plane toward the zenith;

V_ be the gun velocity (i.e., aireraft’s true
pirspeed); taken to be along the
X-axis;

Y  be the muzzle velocity of the projectile,
relative to the X, ¥, Z coordinate axes,

W be the initial velocity of the projectile;
{t is the resultant of V and V.

t, be the time of flight of the projectile.

P be the Siacel coordinate; it is the dis-
tance along the line of departure from
the origin of the z, v, z system to &
point H which is vertically above the
projectile. The projectile ia considered
to be moving without drift.

Q@ Dbe the Siacci coordinsate, which is the
vertical distance from H to the pro-
jectile.

r, be the distance between the muzzle of
the gun and the projectile at any in-
stant f; it is called the slant range or
future range and, in firing tables, is
denoted by D.

Consider again the three coordinate systems
described in section 1.2, The Coordinate Sys-
tems,

The direction cosines of the bore of the gun
inthe (X, Y, 7) coordinate systems are given by
cosA.nnZ,, sin A, a-in~Z.r, and cos zZ,
and the initial components of the velocity of the
projectile in the (z, , £) system are
(%= V,cos A. sinZ, + V,,
u,=V,stn A, gin Z,, and
Uy =— V.co8 2,
It follows then that the initial true airspeed of
the projectile is given by
Ut =t -t U
=V.icos A, 8in- 2, +2V,V,con A, sin 2,
+ Vot + Viicosr Z,
+ V.isnt A, sn Z,
=V, [sn* Z,(cos* A, + &int A,) +cost Z,]
+2V.V,cos A, 8in 2, + V1,
(120) ui=V +2V,Vecos A, 8in 2, + V.o
Aftera time of flight ¢, the 3iacei coordinates
of the projectile are P and @ and X, Y, Z coor-
dinates may be found in the following manner.

The right spherical triangles shown in figure 11
vield the following relations

oot r=cosE,cos A, =8inZ,c08 A,,
Hny=enE,/sin-=cos 2./ Hn r,
Hn 8, = Hn o M7y,

o8 v =coad,cos A

(1.19)

(1.21)

The vector diagram of figure 12 yields

V.

(1.22) Hlv = —-HR 7
Ho

50 that v

(128) #nb, = ’ cos Z,.
U,

The coordinates r, y, z of the projectile are
given by
(‘ r=Peos A =Pcosi,cos A’
} = P eos v,
(1.24) .
( y=P sinA =Pcosgd, sm i,

' _z=Psind, — @

~ ems NN EES EE) WS AN DB BEG BN £ B0 KR o =S

yr—
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Fipure 11 — Spherical & on Unit Sphere

do

180°% 1

Va
Figure 12. — Vector Diagrom of VvV,

The coordinates X, Y, Z of the projectile in
the moving frame of referencs, figure 13, are
related to z, y, 3 by
(128) X=z-Vt, Y=y andZ =1t
since the aircraft is assumed to be moving hori-
tontally along the r-axis. '

Upon combining (1.19), (1.23), (1.24), and
(1.25) we find the coordinatea of the projectile

at any time ¢ to be

p
X: —(VQ+ V. ﬁﬂ Z. mA.)_V.i'h
y

v,
(128)( Y=P—-1sinZ,tin A,
U,

vy,
Z=P——cotZ, - Q.
X,

The relation of the rectangular coordinates
¢ n, {, which are moving with the aircraft (see
saction 1.2), to X, Y, Z coordinates ia given by
the following scheme:

|
x y | oz
¢ ‘ sinZ.cos A, sinZ,sinA, cosg, |
P ‘—cer.coaA.‘ —N}&Z,sinA.' sin Z, |
{  -#inA, . cos A, 0
13
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(X,Y,Z)

Y

Figure 13. — Bullet Coordinates

Thus the ¢, 5, { coordinates of the projectile

are given by
v,
¢=P—u —Qcos 2,
U,
P
+ Vs ( —t,) &inc,cos A,
Uy
(1.27) B P
n=—1V, (__t,) co8 Z, cog A,
Us
—QsinZ,

P
{=-—-V; ( —t') st A,.
Uy

The slant range r; is now given by
(1.28) 72 =¢ 409" + °

In aerial gunnery the primarv baliistic prob-
lem iz to determine:

14

{a) the time of flight, ¢,, and
(b) the gravity drop, @,

x, X

for a given P. They are, of course, dependent

upon the following quantities:

p = the relative alr density p./p,,

~

(1.29) .

:

V. = muzzle veloeity of the gun,
. = zenith angle of the gun line,

A

0l

z
\ P the Siacei coordinate.

s = true airspeed of the aireraft,

azimuth angle of the gun line,

Values of ¢, and Q may be computed for given
values of the quantities (1.25) and tabulated.
The usual procedure, however, is to tabulate ¢
and ¢ ac fixed interval values of these guantities.
It is customary to replace P by r, in this tabu-

lation.

L .
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Pigwe '1. — Spherical & on Unit Sphere

Uo

T=-¥

T 180% 1

:ﬂ of vo, Uo, VG

f the projectile in
102, figure 13, are

yandZ =¢
t1 be moving hori-

1.23), (1.24), and
g of the projectile

at any time ¢ to be

P
X = '_(VQ + V. “ﬂ Z. [~ A.)_Vdf)
e

v,
(128){ Y=P——sinZ,8in 4,,
™

v,
-Z=P——cotZ, -~ Q.
u,

The relation of the rectangular coordinates
¢, 7, {, which are moving with the aircraft (see
section 1.2), to X, Y, Z coordinates ia given by
the following scheme:

o x vz
¢ | sinZ,co8 A, sinZ,sinAd, cosZ, |
s | <o082,c084, —ﬂer.sinA.L sin Z,
{ | —sin4d, . cos A, 0
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’ |
Q L)
/‘ B (XY.Z) i

x, X |

Y Figure 13. = Bullet Coordinates n
. Thus the ¢ », { coordinates of the projectile (a) the time of flight, ¢;, and |
are given by {(b) the gravity drop, @, [
. ¢ = p-v_° —Qcos Z, for a given P. They are, of course, dependent
] U, upon the following quantities:
. p [
+ Vs ( —_ —t/) ginZz, cos A., . p = the relative sir density p./ps,
— Ue Vs = true airspeed of the aircraft,
(1.27) , P V. = muzzle velocity of the gun, lf
n=—Vs ( - t") cos Z, cas A, (1.29) Z, = zenith angle of the gun line,
u, : )
_QsinZ, ( A, = azlmgth angle of the gun line, v
e . P = the Siacci coordinate, ‘
C:—‘VG ( —tr)S{nAc. t
uC

Values of ¢, and @ may be computed for given
The slant range r, ia now given by values of the quantities (1.29) and tabulated.
. L s The ugual procedure, however, is to tabulate ¢,
. 8 ’2 : L3 . -. - - . ' ’ Rk )
(1.28) 7 ST and @ at fixed interval values of these quantities.
In aerial gunnery the primary ballistic prob- It is customary to replace P by r, in this tabu-
lem ig to determine: lation.

|4
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the formulaa
(1.30) { sin A =1{/r,
[ #in u=n/r.

.10 Dimensiontess Ballistic Coefficient

The ballistic coefficient defined in section 1.7
is not & dimensionless quantity. A more mathe-
matically logical treatment of the development
of the Siacci method for sarial gunnery is
obtained by defining a dimensionless ballistic
coefficient. Let the subscript s denote quantities
related to the standard projectile of a given
type, then we may define

W 154

' W, ¥,
{1.31) C,= =
=(z) (5)
— 1 —_—
Ku,( d, d,
to be the dimensionless ballistic coefficient for
a type n projectile.
The first equation of (1.9) under conditions of
15




NAYORD REPORT 1493  MATHEMATICAL THEORY OF ARBORNE FC

no wind may now be written (unita in pounds, -

length, seconds)
K
zT=— i ar v,
mg

Ky w, d)’ peKp AtV
= - == i
"k, W (d‘, [ 7, ]

K v -
—D— (..d_) p..Kp.v
Ko, \d, A )

e p W, o

>z En
W, - .
g . KD. v
—_— e e— v;
C. _w:_.
d,

(182) 2=——L—G.(v) v,

where
peKp,v
(1.88) G.(v) = ——
ml/dJ.

is the drag function, for the standard type n
projectils, determined from test firings as a
function of the velocity v.

In aerial gunnery, the trajectory is nearly
flat and consequently we may use the Siacci
approximation.

v =u and G, (1) = G, (1)

and equation (1.82) becomes

(1.34) G u) v,

I =—

Un

In section 1.8 we saw that if the (r, z)-plane is
the plane of departyre, then

T, = uUcosf, or u=u,s8ect,
from which we get by a differentiation

16

du .
—_—— v, 8ect,

dt

(1.38)

P o
= — = (G, (u) v, 8€ch, nince v, = 7

"~

p
= — — G, (u) u,

-

8ince u = dP/dt, we have

du p dP
= — Gl(u) —
dt C. dt
or
Ca du
(1.88) dP = — —

p Guln)

Equation (1.86) may be integrated to give the
Siacci range, P,

%

s du C,

(187) P=-— - =— (8 -8,),
p Gul)  »

%,

where S i= the Riscel space function

U
du
(1.88) S=—f —, (U > u,).
, Ga(u)
U

The time of flight may be obtained by integrat-
ing equation (1.35)

u
C, du C.
(1.89) h:——f———-:-—-- « -T,),
) uG.(u) p
H,

where T is the Siacel time function
LT

du
(140) T = — /—-,
u (. ()

24

(U > u).

[.11 The Motion of Small Arms Projectiles
Fired from an Aircraft
The effect of the yaw on the drag of a amall

arms projectile is an important factor in the
motion of these projectilesa when fired from s

1

N

- = -
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(1.41)  cos n.t, min n,t, cos n,t, and sin n,t

with four coeficients that are slowly varying
functions of time and in which n, and n, are
solutions of the associated frequency equation
and take the forms

‘ AN
‘ f= —— (1 +p)
£B

(1.42)

AN
Ny = ———= (1 —P)
¢B

where
(143) p=~v 1—(1/8)

and the quantities 4, B, N, and s are defined in
section 1.6,

[f we ignore the gradual variation of the co-
efficients, then (j, k) may be considered to be
the rectangular coordinates of a point M which
is rotating in a clockwise direction at an angular
rate n, in a cicculer path of radius a,. The center
of this circular path, S, rotates clockwise around
the origin at an angular rate n, and describes a

|7




NAYORD ABPORT 1493

MATHEMATICAL THEORY OF AIRBORNE FC

—

Figwe 16. = Initiol Conditions of Vikrgtory Motion

circle of radius a, The clockwise angle from
the /-axis to the radius vector of M {3 the angle
of orientation of yaw, s, and the distance of ¥
from the origin may be represented by the angle
of yaw, 8. The configuration {s shown in figure
18, from which it s seen by the law of cosines
that

(144) ¥ =a’+ a,' — 2a,a, €08 (N, — M) 8

it the time {s measured from a suitable instant
and the algebraie signs of n, and n, are taken
into eonsideration.

The rotation in the circle of radiua a, may be
called the nutation, and the rotation in the
cirele of radius g, may be called the precession ;

I8

the resultant of thess {wo is the complete yaw-
ing motion. The slow variation of the coeffcisnts
of the periodic terms in this vibratory motion
consists of arbitrary constant factors multiplied
by damping factors. We may consider a, to be
the amplitude of tiie nutation and a, the ampli-
tude of the precession. The rates of variation
or of damping of the amplitudes may be experi-
mentally determined.

For small arms bullets, the two damping
factors have been shown experimentally to be
equal and may be expressed by

(145) ™ JmeiP

-
L

.

—

&

- |

| — ]

L ]

| ——

4_




whers P should be the actual distance the bullet
has travelled but which is here taken to be the
Siacci P. The constant ¢, may be experimentally
determined &nd is given by

d' Ky d*K;
¢, = - -

£B rm
where K. i the yewing moment coefficient,

(1.46)

Let us consider a projectile which atarts its
motion with &n initiel angle of yaw &, the angle
of orientation equal to 90°, and such that the
initial vatwes of the time derivatives of 8 and
are zero; that is, initlally t =0, § =&, » = 0807,
¢ = 8= 0. Figure 18 pictures the situation at
t = 0O and also at some time ¢.

Let p, be the angle between OM and OS, then
from figure 16, we have

tt=p— 80"+,

and upon differentiating with reapect to ¢

-

ﬂ1=;+?‘1~
At t = O we considered y = O s0 that initially
W=

1 we apply the law of sines to triangle OMS,
we obtain

G MR [180° — gy — (1, — ny)t] =a, #iny,
or .
axm[h""' ("x—"i)t]_—'a*t“"h»

Differentiating this equation with resapect to
time, we have

a, [p 4 (n, —ny)] cos [y, + (1, — ny) t]
= G49, CO8 9, .
Thus. at ¢t = O we have
g [o+ (1, — 1) | = Gio,
or, since 3, = nyatt =0,
a\n, = a,n, .
It is easily seen from figure 16 that
e = 4y —a,
go that we have two simultaneous equations

(147} =06 a@
[ an, = an,

s 0. 8.3

AEROBALLISTICS
whence we may solve for the initial values of
a, and a;,

[ 78,
g Qo = ———
n, — n,
(1.48) .8
¥
2 i =
ﬂ), —_— ﬂq
The subatitution of (1.42) into (1.48) yields
(1 - po) 30
1y = w———,
‘ £,
(1.49) . (1 +p) 8,
Ay; = —
2o,

where 1, i8 the initial value of p. 8ince the damp-
ing factor is common to both, we have a; and a,
given at all times b_y

(1 —p) ¢, [ P, ]u ".p.clp |

01 - — t
2p, P
(1.80) (1 %908 [ P ]* =ps 0P
Og = —— 8 )
1, y

where p,* is the arbitrary constant factor mul-
tiplying the damping factor. The mean values of
8t averaged over a single period of #* is

i’ —_— al’ + a1.
I+p! /B ~2p, ¢.P
(151) =8, (_) e
2, 1]

ea—i ( po ) -QP‘CXP
=3, €

8, — 1 p
where the last equation is obtained by making
use of equation (1.43). The variztion of the
stability s along the trajectory is approximated
by

—pe 41 1
. — KpP

D — e 8, — 1 m

p
The mean value of 8! is then finally given by

e—gpa(cz + &) P

(1.562)

- 30"‘*

(1.53) & =8

8, — 1
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where
d:
¢y = ————— K.
£(e, —1)m

The yaw of the projectile has two effects upon
the trajectory. Firat, yaw makes the drag
greater than it would be if no yaw were present
and, secondly, it introduces the so-called wind-
age jump. At the instant of firing to starbeard,
the tangent to the inatantaneous trajectory
points higher than the tangent to the mean
trajectory, in other words, the tangent to the
mean trajectory is lower than the bore of the
gun by an angle ¢; this angle is called the
windage jump. The windage jump for a given
bullet Eep-ends essentially on the initial angle
of yaw and the initial air speed of the bullet. It
can be shown that . is givan by

(1.54)

-L—AQ‘:—,—.E,LH&A e [

(1858) .=

where K, and K, are again the force and over-
turning moment coefficients. The effect of the
windage jump upon the trajectory may be con-
sidered ag a differential correction and thus the
motion of the projectile will be studied first by
neglecting the windage jump.

The effect of the yaw on the drag may be
accounted for by applying & modified drag force
coefficient for the standard projectile. Using
the approximation that the drag force due to
yaw is proportional to the square of the yaw
angle for emsll yaw angles, we may write

(1.58) Ko, =Kp (1 + Ko
where

Ky = drag coefficient for zero yaw angle;

o
Kps = yaw drag cnefficient;
8 = mean value of & discussed above.

If this expression for K, is substituted into
equation (1.33), we have a new drag function,
Ge, which makes aliowance for the yaw of the

projectile,
(187) Gsa=G (1+ K38

where 7, is the experimentally determined drag
function for zero yaw for a type n projectile.

20

Let ¢, ¢, be a set of rectangular axes fixed in
the air, lying in the plane of departure with
1, horizonts] and ¢, vertical. The origin is the
cosition of the gun at the instant of firing. It is
easily seen frum figure 17 that

(1.88

)g P=i secs,
[ Q =i tand, — i,

— i

Figure 17.— i, i, — System

For the equations of motion of the projectile,
taking account of the influence of gravity and
drag, we have equation (1.32) and a similar
equation in the 2 direction where z and v, are
rep laced by ¢, and {,; -z and -v, are replaced by
1, and 4,, and the drag funection is corrected for
yaw by formula (1.57). Thus,

G. _ R

( t‘,=—pc—(1+&‘ Kp) h—g

(1.59)/ *
(.: G. _ ,
‘ 11=“P"CT(1+5’KDB)”'1 )

where
p 18 the relative air density.

(G. s the appropriate drag function for
ZETO YAW,

C. 1isthe appropriate ballistic coefficient,
and

K.s is the yaw drag coefficient,

From equsations (1.58) we have

{ t,=Pcosy,,

(1.60
)‘ ,=Pe&né, —Q;
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mmm Lu.;ﬂaa@fimylﬁu

T‘o Q.mnmmwthaﬁmeqmton
COpesn the sebatitution of .the sscond
of (1.84) and (1.88) Lato this aquation

\a%gm_ DR
:‘t‘%.- _ii_:v( o

mh "Whnﬁaurdiﬂcmnﬁdeqm
tich in @ which may be iatagratsd to obtain

5, e -;.;,',,»1; i gy
: e”r.'a IR i”

0

smafououmo P=y=wxatt=0,
Jt‘ndP/u,mdP Patt =1, wehave

P
Q=g [ —
!

(1.75)

]

whers the prime is again a dummy index. A
second integration ylelds, since Q = O at t = O,

¢, P
176 Q=g [ [ f Wt dP) dt
0 0

22

or
P F

(177 @ [ ‘/’
1.7 =§'J

J

] (o]

where again dummy varisbles of {ntegration are
used, with the evaluation of ¢, and @ for given
values of P from equations (1.28) or (1.27) and
& transformation to the z, y, s coordinate
system.

Tha effect of the windage jump upan the
trajectory is small and is applisd to the thajoc-
tory by an approximate differential correetion.
The windage jump ehanges the direction of the
limofdmrturebyaddmwthevma 'y
vector J whoss magniiude 13 x. and-wideh is
directsd at right angies to the plane eontgining
Yoand V., In s sense suph that vestars ia the
djre-ctions of Vo V., J form an ordersd right.
handed triad. Sinoe it is perpandieular to the
plane containing V. and since Y, Is assumed
mudmmmxmmm:u

perpendicular to the X-axis and its dirsction
cosine with re tuXle'o Simcs this vactor
als0 iz perpen to V,, it is easily sean, By
referring to ﬂ.ruu 11, ths,{ its direction cpaines
with mpgcttathoatheruuw:bc!ound
from the disgram of figurs 18 in whish V) ia
the projection of ¥, upon the (Y,2).plans,

They are thus sin y and cos y. Formulas
(1.81) then furnish the direction cosines for
the 2, y, s system in tha form

(1.78)

% dP 4P

0,00 8./{1 — im K, coa* 4,)%,
HaZ, bn /(1 — 0w Z, co® A,) 1,

The components in the z, y, 3 system are these
direstion cosines multiplied by u,e

The windage jump does not alter the magni-
tude of u; its effect is to incrense the X, ¥, Z
coordinates of the projectile by the z, y, 2 com-
ponents multipHed by the time facter Pu,. We
thus have the increments

Aax =0 )
(179K AY = Pecos 2./ (1 — #in' Z,, cos* A,)

A8 = Prein Z, sin A/{1 — ¢in* Z, cor' A,) }.

r- .‘_



(1.61)§ ho=Peord,

4, =Pmnes, — Q.
i, = Pcosd,,

(162) a Poeos
t,..—Pﬁne —Q

Equatio (1 59) may therefore be writien in
the fo form

. . Ga .
Pﬂﬂ0.~0+p—-c— (148 Kop)

(Print, -Q) +9=0,

{1.68) G
ﬁmog-q—p-—c-:-u + 8 Kns)

} »
P.m‘¢=0»
ot

G,
Q+PT(1+"KD8)Q='+M’.

L]

G,
(1.84) (P+p—c-— (1 + T K Pl

. G

15+p-—c—(1+8'xua)P=o.

. du

Y I — The
at

Rte-lll%ﬁ.tu:i"sotiutﬁ:

second equation of (1.64) then takes the form

G. _
(1.658) dﬂ+p—E——(1 + 8 Kpt) dP =0,
or
du G. _ dP
(188) — = —p—— (1 + 8 Kp3) = —.
aP Ca aP

Since G. i & function of u, we divide (1.65) by
G. and rewrite to get
du p _
—_——— = —— (1 + 8" KRp3) dP.
G Ca
We have now separated the variables and we
can integrate to find

-
(1L.87) — ,/fc;:'bp-ﬁ[ (14 ¥ Rps) dP
* ) ) .

l:dP+KD3;./ 'a"df}

The integral on the left-hand side of equation
(1.67) yields the Siacci Space function § for
the drag function G [see equation (1.17)]. On
the right-hand side we have from equation
(1.83)

P
+—Kne

[(8. -ng(cx + c‘)P)dP
&H—!

where P ia a dummy varisble used to indicate
the value of P &t any point in the interval of
integration. The initial value of P = P, is sare
and the initial value of S =S, is the value of
S at u,. Let

(168) e=(ei+06)p

where p, {8 the standard air density, We can now
evaluate the integral of (1.68) and upon subati-
tution of the initial values we finslly have from
{1.87)

(1.68) ——HP'

p -
(1.70) S=S'+EP+K (1_¢“‘P).
where l
(171) K= Kppaple—t
£C,c 8, — 1

The value of ¢ for & given Siacci coordinate P
may now be found in the following manner. The
constants necessary for the given projectile
such as Ko, K8, ¢, ¢, ¢, etc., are determined
experimentally. A drag function G.(u) also is
determined from measurementg, and the Slacel
space function S i3 tabulated for this drag
function by numerical integration of (1.17).
Then, under given firing conditions of 4., 2., V,

2L




u°l

fblnd;onCutngg of ue e i
At Upon using (1.30) and (1.80), the increments l
on A and p are then approximated by -
. P Vq
B\ = = ¢ — c08 Z, c08 A, ,
A.] ( 1.8 4) rr ’ouv
' ) ‘ P Vu
bp = — ——— g =it A, .
' Substituting (1.58) into (1.84) yields
PV
be 82 = b —— — co8 2, cos A, ,
the o M ‘
ted  (1.85) P Ve
be BP' = — ) — sin AQ
r U
where
AN K,
(1.86) = — .
Ku
we . R
ing . . .
1.12 Ballistic Computations for Aerial

Gunnery

Ballistic data is computed and presented in
firing tables. For aerial gunnery, th® computa-
tion is based upon the theory developed in the

23
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last section, the computational steps for which
may be summarized briefly as follows:

(1) Determination of the drag functioh
G.(u) for a projectile of given type by
test firings.

Determination of the carresponding
8iacci Space function S (1t). See equa-
tion (1.17).

Determination of the ballistic econ-
stants K,, Ky, Kp, Kp3, Vo, 8., ¢, ¢, b,
and C, for the specific projectile from
experimental data. ¢ = ¢,p, and ¢’ =
ped*Kp/8m are determined instead of
¢, and ¢,. The quantity s, is the value
of the stability factor s near the muzsie
of a stationary gun in air of standard
density. It is experimentally deter-
- mined in such a manner that it may
be used in step 7 below. .

Choose values of the variables, each
from one of the following intervals and
hold thess values constant throughout
& given computntioq:

(2)

(8)

4)

OSPSI. OSZ._SIB(P
0 Vo 800mi/hr. O <A, < 180°
O0<P<10,000ft.  Starboard side.

IR S bl

"The computations for the port side
are the same except that the lateral
deflections change signs.

(5) Compute u,:
=V +4+2V,V,8inZ,c08 A, + V,*.

(6) Compute 3,%:

Vi

8¢ (1 —sin*Z, cos’ A,) in

U’
radians.
4 Cgmpute 8
8 = V.2 so/Puoi .

24

Y ki B ‘»‘?:‘N,u‘

1
L]
]

(8) Compute c:

¢’ ‘
c=c +

‘9 - 1
"7 77(9) Compute K:

1
K= ————
2C.c

Ka3 8,8 kil .

(10) Compute S for a given sequence of P
taken at even intervals:
) |

" where S, is the value of the Siacel
space function at 4, and is found from
the Siacei Space Function Table.

8=s.+—£-P+x(1-c""’

(11) Find u from the Siacei Space Function l
Table using the values of S from
(10), and then compute 1/u and 1/ut.

(12) Compute the time of ﬂlght t:

P

T

by a numerical integration having
given 1/u, the integrand, at evenly
spaced intervals of P.

{13) Compute Q:

P P N
U
o 0 .

by a numerical integration. This is
simply a procedure of finding the sec-
cnd primitive, .




.I‘}"

ba o

V.
¢=P—— —QcoeZ,
U,

+ Ve (——h) oin Z.eocA..

(— - t,) cos Z,cos A,

—Qenz,,

P
c=—Va (—-t,) “”A.c
U

(18) Compute #,:
=<+ +L.

(18) Compute A and u:

¢
4] rr

(17) Compute 32 and Qy:

Vo P
M=b—————co8Z,cot A,,
u!
Vo P
8# — b ——8i‘n AQ .
w1

The computation gives values of ¢, A, x, 82, and
3, for evenly spaced values of P and correspond-
ing computed values of r; at the chosen values
of the variables mentioned in (4) above. These
guantities can then be put in terms of evenly
spaced values of r, by graphical interpolation
or by any other convenient method of interpsla-
tion. This is the usual form for tabulating data
in aircraft firing tables.

= : e R T T TS R e S Y TR e TR —— o
FE e, o N
o oA AEROBALLISTICS
(14) Compute ¢, 0, {: . . .. . _.« .The units in which the tabies are computed

are feet, radians, mils, and seconds. The units
in which the tables are published are usually
yards, miles per hour, mils, and seconds. The
mil“used here is the military mil defined to be
1/6400 of a revolution.

1,13 Bullet Firing Tabies

_In order to further illustrate the computatfon
and use of firing tables let us consider a amall
portion of a bullet firing table. A certain 20-mm
projectile has the following ballistic charac-

teristics: R -
8 =28B5; ¢ =.00154881t.1;
C. =-510; ¢” = .0000978 ft.*;
Koy =164; b = 88,600 mils/ft/sec.;
V. =2150 ft/lpc.

Consider the following vnluu of the vnrilbler
Vo =800 mi./hr. = 440 ft./sec
p =.8
A, = 45° = 800 mils
2, = 22.6° = 400 mils
g ==82.174 ft./sec'.

P was chosen at intervals of 1000 ft. For the
jntegration, 9-point Lagrangian integration co-
efficients were used. The quantity 4 represents
the first integral of 1/u* and B is the second
integral; i.e., B is the integral of A. The inter-
polation for evenly spaced intervals of », was
done graphically. The windage jump correc-
tions, 3, and 8., are nearly constant for r, and
are usually tabulated for all r,. The constancy
can be seen by the check made at the two ex-
tremes. The evenly spaced intervals for r, are
given in yards, everything else is in feet. A and
u are obtained in mils by simply multiplying
their sines by 1020.

25
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Table 1.1 Computation of Firing Tables

| R !

' !

i P 2P ¢—20cP S u 11‘><10+' { :;x10+° |

' i

. 0] 0 1 4224 264 | 2000.162 34481.| 0 .1188¢ |
1000 [ 2.55248 .077888263 6036.468 i 2456 784 40704 .37874 .16568

. 2000 ! 5.10496 .008066582 7624.067 | 2008 867 47645 81870 -22700

. 3000 | 7.65744 .000472516 9104.171 | 1777.268 .56266 | 1.33605 .31659

' 4000 | 10.20992 .000036803 | 10762.913 | 1489.775 87124 | 1.95149 45057

l 5000 | 12.7624 .000002887 | 12331.540 | 1242.493 .80483 | 2.68828 84775

leooo 13.31488 .000000223 | 13900.177 | 1074.132 .93098 | 3.56875 86673

| 7000 | 17.86736 000000017 | 15468.804 : 983.271 | 1.01701 | 4.53508 | 1.03432

: 8000 | 20.41984 000000001 | 17037.431 | 911.952 | 1.09655 | 5.50012 | 1.20242

( i I 1

|
P AX10+ B Q y -2 va(z,-ﬁ)
i U, u,

0 0 0 0 0 0
1000 . 148342 070032 2.2532 .033930 14.92918
2000 .338067 .308882 p.8736 .120080 56.70527
3000 .608321 773153 24 8754 .302525 133.11120
4000 .086850 1.5509572 50.1777 572258 251.79355
5000 1.531335 2.802213 90.1584 .064237 424 26407
8000 2.200161 4.694521 151.0415 1.489900 855.55608
7000 3.246363 7.440028 23908650 2.122321 933.82126
8000 4.355123 11.235351 361.4862 2.831657 1245.92804

P ¢ ” ¢ r, sin A 8in u A »

0 0 0 0 0 0 0 0 0
1000 | 942.101 8.801 10.557 | 042.202 | .011204 | .00p436 | 11.43 9.8
2000 | 1871.955 33.325 40.160 | 1872.682 | .021445 | 017795 | 21.87 | 18.15
3000 | 2785 667 77.440 04.124 | 2788.332 | .033756 | .027772 | 34.43 | 2833
4000 | 3678.300 | 145.200 | 178.045 | 3685.570 | .048308 | .030421 | 49.27 | 40 21
5000 | 4543.014 | 242.662 | 300.000 | 4559.371 | .065798 | 053222 | 6€7.11 | 54.29
6000 | 5372.402 | 370.462 | 463.548 | 5405.073 | 085761 068539 | 87.48 | 69.91
7000 | 6163.4490 | 518334 | 660.312 | 6220.353 | .106153 | .083328 | 108.28 | 84 99
8000 | 6914.669 | 675.609 | 881.005 | 7003.232 | .125799 | 006471 | 128.31 | 98 40

r 400 800 1200 1600 2000
4 .49 1.11 1.89 2.92 4.26
A 14 29 48 73 102.5
N 12 24 39 50 81
A 3.1 — — —_ 3.4
du -3.4 — — — -3.7
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ing, it also will act upon the bomb and will cause
it to drift with respect to the ground, and this
drift becomes a serious factor in bombing.
The force system for a bomb is similar to
that of the general projectile already discussed.
A bomb, however, is not given a spin but is
equipped instead with symmetrical fins which
serve to bring the center of pressure behind the
_ center of gravity, thus making the bomb stable.
| The same coordinate system that was used
; before also can be used for bombing, except that

: AEROBALLISTICS
| Firing tables are usually massive. A amall portion of one table is presented here for future reference.
i o Table 1.2
E Firing Table. Without Windage Jump
| pmd V. =2750 ft /sec. Vo =450 mi/hr.
t/ M * by
secon mi mi
i ds ils ils
: z A D (yds)* D (yds)* D (yds)*
mils | mils | 400 |-800 { 1200 1600 | 2000 800 { 1200 1600 | 2000 400 | 800 | 1200 | 1600 | 2000
.
A1 | 1200 0| 47 [100[1061(233|322] 3| 6| 8| 12| 15| o] o] of ol o
: 400 { 47 (1.001.61]233|3.20 3 i} 71 10| 12 86 12| 18| 26| 38
i 800 | 47 }1.01|1.62|232|3.16 2 3 4 4 5| 12| 23| 36| 49 68
' 1200 | 48 |1.02(162{230(3.08| O —-1| —-2| —-4|-6| 20| 34| 48| 65| 84
_J 1600 | 48 {1.02/160(228(208| -3 | —8 | ~0 |—14 (—-18| 25| 40| 85| 71| &8
2000 | 48 |1.00|1.67|218|285| —0 |-11 |—16 |[—22 |-28; 22| 35| 47| 60| 74
2400 | 47 | 98(152(210|272| -9 |~15|—22(—28|-38] 15| 24| 32| 41| 50
- 2800 ( 46 | 96 148204 (263| -0 (~17 (—24 |—-31 |-30 9 13| 17 21| 26
| 3200 | 46 | 94|146/200|2.58| —9 (~17 |—24 |-31 [-30 0 0 0 0 0
1600 0| 46 | 00| 160|231(3.18) -3 | -6 |—10 |—16 [—23 0 0| 0 0 0
] 400| 46 | 9090160231 3.17| -3 | -6 |—10|—16 [-23 6| 11| 18) 28| 35
800 | 47 |1.00]1.61|231(3.13| -3 | -6 |—10|—16|-22| 12| 22| 34| 48| o4
— 1200 { 48 (1.01|1.61(228(3.05| -3 | -6 |—10(—16(-21| 20| 34| 48| 64 | 82
1600 | 48 {1.02)160(224({295| -3 | -6 !—10|—15|-20| 25| 40| 84| 70| 87
o 2000 ( 47 | 99|1556|216({281| -3 | -6 |—10|—-14|-18| 21| 34| 46| 68| 72
[ 400 46 | 97(150(207(267| -3 | -6 | -9 |—13 |-17| 13| 22| 30| 39 | 47
(= 2800 | 46 | 94| 1456|100 (256 -3 | -6 | -9 |—12 |-16 71 12| 18| 20| 24
3200 | 45 | 92142 (195(251| -3 | -6 | -9 (—12 |-15 0 0 0 0 0
- 1.)4 Bomb_Bgflistias the origin is now located at the summit of the
U In bombing from an aircraft at ground tar- trajectory and the trajectory has only a de-
scending branch.
) gets, the bomb is released without any project-
: " In general, the theory is the same. We shall
4 1 ing force and allowed to fall. As it travels consider the theory of bombing in chapter 6
H through the air, it is acted upon by the forces € y g in chap :
. of gravity and air resistance. The bomb is, of
’ course, given an initial velocity which is the |.15 Rocket Ballistics
[ ) true airspeed of the aircraft. If a wind is blow-

In the firing of rockets from aircraft, the
rocket is propelled during its burning time and
thereafter falls freely like a bomb. Thus a rocket
acts like both a bullet and a bomb. The forces
acting on a rocket are the same as those on any
other projectile. However, the changing of its
projecting velocity during the course of its
travel causes added peculiarities. The ballistics
of a rocket will be discussed in chapter 7 where
the theory of rocket firing will be considered in
detail.
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DEFLECTION THEORY FOR AIR-TO-AIR GUNNERY

2.1 Introduction

In the main, the present chapter will be
concerned with the problem of successfully aim-
ing a moving gun at a moving target so as to
secure a hit. Since it is only in special circum-
stances that the gun will be pointed directly at
the target, of immediate concern to us will be
the development of formulas expressing the
angle by which the gun-bore axis must be de-
flected from the gun-target line at the instant
of fire in terms of kinematic and ballistic fac-
toras continuously measurable at the gun. This
angle is known as the angle of léad or, more
briefly, the lead angle. The gun will be thought
of ‘as ‘mounted on & platform, called the gun-
platform, and hereafter denoted by the letter
G; while the target, denoted by 7T, will be a
fighter aircraft attacking G. The gun platform
G may be considered to be a bomber or turreted
fighter with flexible guns, i.e., guns the direction
of whose fire is in general unrestricted. By
motion of G or T we shall mean motion with

respect to the air mass, so that the concept of
absolute wind need not be taken into account
here. An object will be fixed in space if it has no
motion with respect to the gir masa.

2.2 Actual Motion and Relative Motion

The actual path in space traced by T, and
viewed by an observer fixed at O, is in general
a very different appearing curve when viewed
from the moving point G. Thus, it G flies
straight and level and T flies along just abreast
of G, an observer at O sees T describe a straight
line, whereas to the gunner at G the target T
will appear to hang stationary off his beam. In
general, the path of 7 as seen from O is called
the “air course” of T whereas the path as viewed
from G is spoken of as the “relative course.” By
way of illustration, figure 20 shows air courses
of G and T, supposed coplanar, with correspond-
ing positions of G and 7T indicated for consecu-
tive seconds. The angle + measured from G's

Figure 20. — Air Courses of Gun and Target

.
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bow to the gun-target line GT, is called the
angle-oft of the target or simply the angle-off,
The approach angle a, measured at the present

position of the target, is formed by the tangent
~ to the target's path and the gun-target line.

More precisely, it is defined as the directed angle
from -r to Vy. The distance GT, denoted by 7,
is the present range of the target. The curve
drawn in figure 21 represents the path of T
relative to G and may be obtained by plotting on
polar coordinate paper the points (, +) asso-
ciated with each G position and drawing a
smooth curve through these points, In figure 20,
the points were plotted assuming constant tan-
gential speeds for both T and G, that is to say,
the magnitudes V,, V, of the velocity vectors
Vr’ Y, are constant. Hence, it is important to
notice that while on the air courses equal dis-
tances are covered in equal times, along the
relative course this is no longer true. The veloc-
ity of T relative to G is in fact V,, —V_, whose

Figura 21. — Path of T Relative to G
30

magnitude, 23 can be easlly verified from ﬁgure
20, is :

(2.1) ' v-r— \4

’Jt;nn

ol

= { Vot + Vit + 2V,Vr cos (a4 7).

This magnitude is dependent on « and r and
hence is, in general, not constant.

2.3 Case {—Fixed Gun-Plotform—Linear
Target Motion

This case is essentially that which obtains in
antiaircraft fire, but, as will be seen, it also

applies to the fighter pilot's problem of cor-

rectly aiming forward-firing guns. The basic
aiming allowance here is for the target’s motion
during the projectile’s time in flight and is called
the kinematic lead. Additional alight modifica-
tions of the gun bore’'s position must.be made
to allow for gravity drop. In this paragraph we
shall consider the kinematic lead only, reserving
gravity drop corrections for later cases of which
this case can be considered to be a particular
instance.

Figure 22. — Fixed Gun vs. Moving Torget

In figure 22, suppose that T traverses line
TT, with constant speed V,. T, represents the
position of the target at the time of impact with
a suitably aimed projectile and will be referred
to as the future position of the target. Sjmilarly,
7, will be called the future range. The angle A;,
measured positively in a clockwise direction
when viewed from above, is then the required
kinematic deflection. Letting ¢, be the time of
flight of the bullet over the range r,, and V, be
the mean velocity of the bullet over this range,
then in triangle GTT, the Law of Sines yields
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' ,. . Late :
8in A, TT, Vrt[ : V!'
- —Sina L8 - V,t; - V, '
whence,

(22) sina=
f

If the lead angle A, is small, we can replace
sin A, by A,, provided A, is measured in ra-
dians, with resulting error less } A:’. Equa-
tion (2.2), considered from the standpoint of a
lead-computing sight, ia not of much value since
the quantities V;, « would not be directly avail-
able as inputs. If we resolve the vector V_ into
components along and perpendicular to GT,
then the perpendicular component may be
written

(2.8) Veslna = #s =r:—:-=r5

wherein « is the angular rate of the line GT in
rad/sec and ¢ is its angular coordinate referred
to a fixed reference line through G. Combining
(2.8) and (2.2) we may write

ro

!

In order to put (2.4) into an approximate form
involving only present data, let us introduce the
veloeity V., whitﬁ represents the mean velocity
if the bullet had to cover r instead of r;. Then,

V, To V,
sin Ap = . =
v, v, v,

where t is the present time of flight, that is, the
bullet’s time of flight over the range r. Since for
small A,, » and r, differ very little, the factor

(24) sina =

s to

“j— is close to 1 and we have, as a useful approxi-
]

mation, the formula

(26) Mm=tle.

The fighter pilot’s problem of correctly aim-
ing forward-firing guns is then taken care of
approximately by (2.4), wherein V, is replaced
by a new mean velocity arising out of the fact

that the projectile’s muzzle velocity has been
augmented by the velocity of the aircraft. Thus,
as far as the mathematics of the situation is
concerned, the pilot might as well be sittingina -
balloon firing bullets of higher m}uzzle velocity.

. 2.4 Case Z—Moviné Gun-Platform

~Fixed Target

This case — which might properly be called
the strafing case — is, mathematically speaking,
the complement of the fixed gun versus moving
target case. There are, however, important
physical differences. In Case 1, the path of the
bullet is an extension of the bore axis, a fact
which is no longer true here as is evident from
figure 28. The muzzle velocity V, of the bullet
is compounded with the gun-platform .velocity
V according to the parallelogram law to give

8 reaultant velocity u, of the bullet with respect

to the air mass. We shall refer to u, as the

 initia] velocity of the bullet and to the paullelo—
- gram GABC as the firing parallelogram.

Under the assumption that the bullet travels
a straight line, it is evident from the figure that,
to hit the fixed target T, it is sufficient to aim

 the gun so that the arrow GB will be pointing

directly towards T at the time of fire. Neglect-
ing gravity drop as before, we find from triangle
GAB that e -

dna  AB GC V,

sinr - GA =-GA = v, ' ‘
whence T S T———
(2.8) 8in A = Ve sin+.

[

The path of the gun platform is shown as a
curved line in figure 23, for the sake of general-
ity. Actually, the individual bullet is only con-
cerned with the tangential velocity VG at the
ingtant of fire. What the gun-platform does after
the bullet leaves it, no longer affects the motion
of the bullet.

From (2.6), we note that bullet direction is
determined by V. and V G and, except for gravity

31




Figure 23. — Moving Gun vs. Fixed Target

drop, is independent of bullet range GT. This

contrasts with Case 1 of the fixed gun-platform

—moving target, where bullet direction was
dependent on V, (ef. Equation (2.2)), which in
turn depended on the bullet range GT,. In the
present case, the only effect of range is that a
more distant target will be hit a little later.

The ratio

[ of gun-platform in a
irection perpendicular to
Visins the gun-target line

V.,  muzzle speed of bullet

appears frequently in the theory of aerial gun-
nery and is called the own-speed deflection.
Hence we may say that for a fixed target, the
sine of the lead angle is given by the own-speed
deflection.

Equation (2.8) can be rewritten involving
r=GT and 8 = o. Thus,

Te
Bin 4\ —_—

(2.7)

a form involving mechanizable inputs.

As far as the actual and relative motions are
concerned, we remark that in space, GT rotates
 about T as a pivot, but, as the gunner at G sees
things, G is fixed and T is drifting backwards
with angular rate e

32

FA BD — BE
gin A = =
v, | A
Vasin-r—u,,sin,
= 7.
or
' Va u,
(28) sinA = sin y — —— sin &,
: V. V.

2.5 Case 3—Moving Gun-ﬂoﬂorm—M;vlng
Target on a Straight Line v

In this section we shall combine Cases 1 and
2 and permit both platform and target to move. .
We shall assume, for simplicity at this point,
that the air courses of G and T are coplanar and
that the air course of T is in fact a straight line
traversed with constant speed. Gravity drop
will again be neglected.

Referring to figure 24, G, T are the present
positions of gun and target, that is, the posi-
tions at the instant of fire; GT, is the air course
of the bullet (bullet range), T, is the future
position of T' (position at time of impact ‘with
the bullet) and ¢, is the time taken for the
bullet to cover the range GT,;. The broken lines
represent auxiliary constructions necessary for
the following derivation:

a form Mm for computational purposes.




Figure 25 — Detarmination of « and ¢

backwards if the
“cr target motion,
t 4 also can be
gular rate « of the
srement range 7. To
ike use of the rela-
wed in section 2.2.
T relative to G is
17 clockwise angu-
n:ar measuremernts
»¢ from G towards
g this vector into
>and along G, T

D —FED
inr

8in a .
rate r i3 cbtained

art of VT—VG on

T
LY

or

(2.18) 7:'=— (Vocomr + Vecosa),

Although figure 25 is drawn for straight line
target motion, it is obvious that the formulas
(2.12) and (2.18) hold in general since V_ at
only one point is involved in their derivations.

Eliminating in succession » and a from (2.9)
and (2.12), we find

re Vr
(2.14) sina = — ] ——38ina;
v, 1%
and
P Vs
{2.15) cginan= g —1 sinr.
Va 1'0

In order to interpret these equations, observe
that if there were no slowdown of the bullet,

we would have | = O and then =in 1 would be
¥iven by

7w 1'u ‘L T
(2.16) sin 4t = — = sin r — ain a

1 v, v,
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Figure 25, — Determination of o and ¢

him to pull the gun forward (backwards if the
target ia receding) to allow for target motion.
An before, the lead angle i also can be
expressed in terms of the angular rate » of the
gun-target line GT and the present range r. To
derive & formula for », we make use of the rela-
tive velocity concept introduced in section 2.2.
In figure 25, the velocity of T relative to G is
the vector V,—V, Assuming clockwise angu-
lar motion ar-positive and linear measurements
on GT positive when directed from G towards
T, we have, upon resolving this vector into
components perpendicular to and along G.T':

—rd=—re=TB=CD—ED
=stma—V93mf

or

(212) re=Vzseinr—V,sina.

A usefu! formula for range rate r is obtained
py conegidering the component of V,—V,on
G.T:

— AT = - AC-CT
— T_f’} Co8 r — p’rC‘O'SG

r=

34

or

(2.18) F=— (Vicomr+ V,cosa).

Although figure 25 is drawn for straight line
target motion, it is obvioua that the formulas
(2.12) and (2.18) hold in genera!l since V,r at
only one point is involved in their derivations.

Eliminating in succession r and « from (2.9)
and {(2.12), we find

Tw Vg-
(2.14) sin A = —1 ain a ;
Ir:‘ P
and
Tw “’(,
(2.15) s8ina = — ! gin r.
v, v,

In order to interpret these equations, observe
that If there were no slowdown of the bullet,

we would have | = O and then sin A would be
given by
r 1. Ve
(2.16) sin A = = gin - — 3in a
Ve } V.




Figure 26, — Bollistic Defaction,

Rewﬁﬁnz (2.9) ag '€ consider only the two-dimenasiong) casge with
Both ajr courses lying in the aame Mathematica|
Ve Ve plane and grayity effect on the byjjet negligible,
8in A = 7—5“1 - TW‘ a In fAgure 28, G and 7 are the Positions of the
’ . Bul-platform ang target at the time of fire
v, eir positions &l the time of impact of the
_ 8in o bullet with T are denoted by G, and T/ Then the
v, ‘

we see, by comparing it with (2.18), that bullet
slowdown alters the les 1

the target and g denoted bu 7. The firing
d term sin A by the
amount

Parallelogram 18 GABC g4 before

Off of the EUL and sight Jine are v angd o, respece-
tively, and their differene

;',7

€ —rishy definition
) the tota) lead angle 4,

—_ , sl

{ -~ 8in ¢«

6 Kinermatic Lead and Bullat Trq;l
SUDDPoge that the effect of gjp resj

To simplify Mmatters, we shal] assume that the byl

M traverges g straight line with constant lon of motion, ang acting

eed, the target path being unrestricted. Again

On the byllet at Its center of Eravity, (aq ex-
ey o . 2.
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plained :n chapter 1, this assumption is valid,
to within a small initial correction called the
windage jump, for explaining the motion of the
bullet in flight.) The effect, then, of air resist-
ance i# & mere slowing down of the bullet along
{ta air course, GT, From figure 26 and the
results of the last section we note that, for a
time of flight of ¢, seconds, the bullet range
(T, i3 equal to the vacaum bullet range GD

1

slowdown factor -—.

(= u,t/) multiplied by the

Thus, GT, = u,t, q. If air reaistance were lack-
ing, the bullet would always have a velocity
component V_ in the direction of the gun's
motion, a0 that a person stationed at G would
always see the buliet moving along a lihe which
would be & mere extension of the gun bore. In
other words, in a vacuur the relative path of
the bullet would be the straight line G%. But,
becsuse of air resistance the obaerver at G sees
the bullet “curve toward the rear” since the
hullet, 80 to speak, no longer keeps up with
the gun. This curved path is, in fact, traced
by thé point T,, whose polar coordinates are
(r/, +/'), a8 it movea along the line GT, with

med“'
by .qJ‘

The angle DG,T;, measured from the bore
axis of the gun to the future range line, is called
the bullet trail or lateral deflection of the bullet.
It is the aame as angle AGT, appearing in the
lower part of the figure, where the line G.T,
has been redrawn in the position GT,’. We shall
denote bullet trail by 1. The angle TGT, is
called the kinematic lead, referred to by the
symbol Ai. It is the lead arising from the rela-
tive motion of the two aircraft and, in the
absence of ballistic effects, is coincident with
the total lead. In general, as is evident from
figure 26, we have

(217) A= “\L — A‘\g .

We proceed to derive some formulas for .,
for the situation depictad in fAigure 26. The Law
of 3ines applied to triangle EG. T, vields:

36

e g S Yy
Y %ﬁ S AT

P T o A T e Py

gin A, gin v gin s,

G,T, ET,

EG,

Since ET, is drawn parallel to G,D=V.t,,
triangles GET, and GG,D are similar, Thus we
find that

ngt/ Vat/
EG{ = ) ET/ = ’
q 2
whanes .
lv'gt/ sin Yy ZVO
(2.18) &min i, = = sin vy,
qry qV,
where
L
Vv =
ty
Similarly, N

(2.19) &in A, =:-V—lin1'/.

The quantity V, appearing in (2.18) represents
the average speed of the bullet over the future
range. An approximate formula for this quan-
tity is found by applying the Law cf Cosines

jto triangle EG/T;‘ Thus:

= EG/’ -+ ET;Z —2(EG/) (ET/) CO8 v
or

1
Vim e [V + Vet — 21V, V cos ]
qi
1
_—— [(V‘_[VGCOS)*)a
ql
: + BV Einty] .

Since V; < < V., the term [*V,* sin®, is, for
most attack data, generally negligible, so that
approximately

) V., —1V,cosy
(220 V., =
. q4 .
and
. v, .
(221) sin A = 3in -,
V, — iV, cosy
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Figure 27. — Aereo! Approximetion

2.7 Determination of the KinemaHe Leod

The angle A, in figure 2b can be determined
resdily using the relative path of T. An arc of
this path traversed by T during the time of
flight t; is shown in figure 27. Since the path of
G is here assumed to be a straight line, we have
immediately « = r. It should be borme in mind
that this is no longer true for curvilinear gun-
platform air courses. In the latter case, to - must
be added the angular rate of turn of the gun-
platform itself.

To find an approximate expression for
sin .. we note that:

Area of triangle TGT, = Area of
Sector TGT[,
or

t
(2.22) qrresin A, =14 / Fiodt  (wdt = dr).

'

0

The expresaion r-. can be interpeted physically
as the angular momentum of a unit mass placed
at point 7 and moving with T with respect to
the moving origin G. We shall denote it by M

and refer to it as the angular momentum of the

i

Expanding M (¢) in a Maclaurin’s seriea we
may rewrite (2.22) as

]
(2.28) rr, ain Ay = [[u+ta&+...]dt

0
— Mt, 1+ iMt)

where M = M(t)], = O, ete., and terms of
higher order have been neglected. This yields
finally the form

t .
(224) sinAr = —— (M+ § t; M)
Ladi

or if (2.20) be employed for V,=r,t,,

g (M + it M)
r[V.—IVQCM‘Y]

(225) gin My =

The approximation (2.22) assumes that the
time of Alight is small and that the curvature of
the relative path is not large.

YWhen the alr courses of gun and target are

bath atraight lines, M is identically zero and the
angular momentum is then constant. To prove

sight line. Let M (¢) = -, at variable time ¢ and
et M = M(O).

this let us write M in the form »fr.). We then
have, by differentiation with respect to the time,
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d

;‘;{: 1."(7"1») - r

(ru) .

Using the relations for » and r. given by equa-
tions (2.13) and (2.12), we find

"!lf:—fVc ((.c—;') co3r
——T“’r (CDTC'Z) Co3 a .,

Since the gun-pilatform is on a linear path, v =
r. Moreover, although the angies - and a« are
themselves variable, their sum is constant and
equal, in fact, to the supplement of the angle
of intersection of the fwn straight line paths.

Hence, .

o d
st+a=r4+a=—— (r+a) =0,
dt

Subatituting into the last expreasion for M, we
obtain M = 0 as desired.

2.8 Case 4—The General Case in Thres-
Dimensional Space

2.8.1 Introduction

In the preceding sections, lead formulas were
derived under the simplifying assumption that
the gun-platform and the target moved in a
fixed plane, the so-called plane of action. In this,
the general case, we shall allow the gun and
target paths to be any flvable paths in space.
Moreover, the additional corrections in the lead
formulas that must be made to take into account
ownship acceleration, projectile drop due to
gravity, angles of attack and skid, angles of

bank and dive, and the secondary ballistic cor-
rection due to windage jump, will be accounted
for. A general vector equation for the lead will
be derived first. This equation, valid for all gun
turret coordinate svstems, will then be spe-
cialized, by way of illustration, for the case
where the gun-carrving aircraft is a bember
with an azimuth-elevation top deck turret. An
example illustrating the computation of lead
angles for a specific tactical situation concludes
the study. It should be emphasized that, through-
out this chapter, gun and target speeds are
assumed constant,

2.8.2 The Muzzle Velocity Vector V.

As noted in Chapter 1, the windage jump
vector J is perpendicular to the plane of Y, and
VG and has the direction of VG X V.. The initial
velocity u, is then

(228) u =V +V +1.

Thus we find that

-~

(221) V,=u -V, 1.

From figure 28, showing the present and future
positions of the gun and target, respectively, we
note that the Siacci coordinates P and Q of the
point T, have the directions, respectively, of
u and n, where n is a unit vector directed ver-
tically downward,

Hence,
u, U,
T R— ,
u=— — (R—Q)
P
Q
T
R f

Figure 28 — Siacci Coordinates
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and thus from (2.27) we find that
% .
(2.28) V._—P—R—Vg—J—w,

wherein the gravity drop component is

2.8.3 An Expanasion for the Projectile Range R

Consider the situation as depicted in figure
29. Here C, C’ are the space paths of ownship
and target, respectively; G and T are their
present positions while T, is t.[s target future
position. Vectors r and R are the present and
projectile ranges; T and T{ are position vectors,
relative to the fixed point O, of points T and T+,
Finally, V_ and V. vectors denote the gun and
target velocities at points G and T, respectively.

From the figure we noie that
(230) R=r+TT=r+T -T

If we assume that : = O corresponds to the
inatant of fire, then T(t will represent the
position vector of an arbitrary pointonthe 7T/,
Tt) = ’Ifand T(o) =T Uponexpanding T(1)

fiqure 29 — Gun and Target Space Paths

in a Maclaurin’s series and evaluating it at
t = ¢, we find

tl
(2.81) Tf:T+t,T+—’2—‘I‘+.‘.,

where T = T(t)], = 0, ete.
Since ’i‘: VTand T =i’r‘ we may rewrite (2.81)

in the form

. g,
(232) Tf—T:t;\'T-i--—é——‘T-*-.u,

and hence obtain from (2.30) the following
hasic expansion for the projectile range R:

tr
{2.33) R:r-f-t,f\T—r——Z—‘Tﬁ-...,

An aireraft fire control computer of the direc-
tor type, e, one where information gained by
positioning the radar antenna (line of sight) is
sent to the computer which then compites the
proper gun orders, 1s sald to be of the first
isecond) order if the firat two (three) and only
the Arst two (threey terms of the right-hand
member of equation (2.33) are accounted for in

39
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™~

Figure 30, -= First and Second Order Bias Errons

evaluating the lead anzle. Thus, a firat order
computer uses target position and velocity data
only, and is based on the relation

(284) R=r4tV,

which represents, for varying values of V, and
t,, the vector equation of the line tangent to the
target path at the instant of fire. For this
reason, & first order computer is sometimes
referred to as a linear predictor, A second order
computer, in eddition to target poaition and
velocity data, employs target acceleration and

is based on the equation

_ T
(280) R:r-j—t,\T——TVf

Geometrically, the vector relation (2.35) repre-
gents, for varying ¢. and 17, a parabola tar.gent
to the target path at the instant of fire. Hence,
a second order or parabolic predictor partially
accounts for target course curvature by replac-
ing the arc T'T, of the target path by the para-
bolic are

43 )
( - r—-—try - —_ Vv -t
(23¢) R=r L\T 5 \T.O<t§z‘.
These facts are illustrated in figure 30 in which
C., C.and € reprezent, respectively, the tangent

40

line to the target path, the parabolic are (2.88),
and the target path itself. The angles ¢, and «,
represent, respectively, the aiming errors pres-
ent in first and second order computers due to
neglect of higher order terms in the expansion
(2.33).

In the present atudy, we shall base the devel-
opment of lead angle formulas upon the second
order expansion (2.35). It will be noted that this
expansion involves target velocity and accelera-
tion relative to the air mass, quantities not
directly measurable at ownship. However, since
target velocity (acceleration) relative to the air
mass is the sum of target velocity (accelera-
tion) relative to ownship plus ownship velocity
(acceleration} relative to the air mass, in
symbols

237) V. =r—V  V =r+V
T G T ' G

)

we can express R in terms of the directly mea-
surable guantities 1, r, VG, VG.
Thus

.

2 32] etV ) e (P LV
i23%) R=r—¢t.(r \G) 5 (r - "G).
2.8.4 Lead Equation in Vector Form

Let us define e and e_ as unit vectors pos-
sessing the directions of r and V| respectively.
.

| iy |
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Then the acute angle direcied from e to e, is
the total lead angle, 1. Since

sin A = e e,

we shail be concerned with the total lead vector,
e e, Dividing (2.28) by V', we obtain for e,
the expresaion

U, A\ J w

= R —
¢ PV, V. V. Ve
Subsatituting R from (2.38) we have

(2.39) e

U,

(240) & =g (r+bi(r+ v.)
" , vﬂ J w
+ 4t 4+ V)] TR kT

The total lead vector ¢ X e, may now be written

by forming the vector product r X e /r, since
r = re. The result is

(2.41) c><0.=,-:'-L'I;%[r><i-~+-1->-<Vci
) . r XV,
+}t,(r><r+r><Ve)}—-—,_-r
rxJ rXw
- rV, - rV,

Introducing the quantity

Wyt
(2.42)

g=1+1=

and recalling the definition of w given in (2.29).
we may rewrite equation (2.41) in the form

q
(2.48) e X e =——

<

. Q ‘|
Lt XV ) —e x| — >|

[r»frHtArx‘r')

ts
Irx VG r xJ
—_—
V. rV,

2.8.5 The Ballistic Factors q and ]

The interpretations of the ballistic quantities
g and [ given hy (2.42) are essentially those
given earlier in equation (2.10) et seq. There i3
a slight difference due to the fact that we do
not here assume that the bullel moves in a
straight line. The quantity t, = P u, now repre-
gents the time of flight in vacuum of a projectile
having the same Siacci coordinate P as the pro-
jectile under conaideration. From the relations

ty = qt, =t +It,

it i8 seen that ! in the factor by which the time
of fiight has been increased due to bullet slow-
down. Moreover,

¢ time of flight in air
> 1.

t, " time of flight in vacuum

A second interpretation for ¢ can be obtained
if we observe that the quantity % = Pt, is the
average speed of the projectile along its Siacci
range P. For a bullet moving at high speed, this
quantity is & very good approximation of its
true average speed. Since

U, initial speed of bullet
q o )
z average apeed of bullet on its
Siacci range

it follows that the bullet is slowed down by
approximately ! g, due to the action of air
resistance,

2.8.6 The Terms Containing V, and Q in
Equation (2.43)

The terms,
£ . Q
244) — (V) —r=<—,
] G

=3 ’/

appearing in equation (2.43), can be rewritten
g0 that when linear accelercmeters are used the
dominant part of the second term is included
with the first. We note firstly that Q ¢, can be
written as

4|
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Q
(2.45) —=—(g—Fn),
¢ 2
where g is the acceleration due to gravity and
F is & correction term, depending on projectile
type, air density, and time of flight. Combining
equations (2.44) and (2.45) and denoting the
difference VG-—g by a, we can write (2.44; in

the form

¢ Ft,
(246) —r ~a-+~ —1r x N,
2 2

2.8.7 Resolution of the Ownship Velotity
Relative to the Ownship Axes

VW< begin by introducing a right-handed sys-
tem of mutually perpendicular unit vectors| _,
I ko related to ownship as shown in figure 3f.

ese vectors are fixed relative to ownahip. The
vector | 18 directed forward along the longi-
tudinal axis; the vector jG iz directed along the
starboard wing; the vector k,=1_x}, then
completes the coordinate system. \?v’e shall in
the future refer to this as the ownship aystem,

In order to resolve the ownship velocity Ve
relative to the ownship aystem of axes, we define
first the angles of attack and skid, Figure 32
shows these angles, with the attack angle a, and

¢ iG
ko
Figure 31 — Ownship Axes

the skid angle a, both positively oriented. (The
numerical subseripts ., ,, , on the letter a indi-
cate corresponding argular rotations about the
i, (roll), i, (pitch), k_, (yaw)-axes, reapec-
tively.) More precizely, we have the following
definitions:

(a) the angle of attack, a«, ia the acute
angle from the longitudinal axis i, to
the projection of VG upon the (ig,kc)-
plane; a, 15 positive if V. is below the
(lG.jG)-plane‘

(b) the angle of skid, a,, i3 the acute angle
from the longitudinal axis I, to the
projection of V_ upon the (g 350~
plane; a, {8 positive to starboard,

Figure 32. — AMack and Skid Angles

42 Fle
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To resolve VG into components along the roll,
pitch, and yaw axes, each component a function
of a, and a,, let us consider the unit vector
‘;:VC V. From figure 32, the unit vectnrs
T, %" are given by

§ =i co8a, —k_ sina,

§ = iG 008 a; ~ jb 3in a,.
If we denote § by
(24T) §=B.1_+B.}, + Bk,
then,

§§ =B cosa + B aina,

§' 9 =B, cosa, + B, sina,

However, since the angles which § makes with
§ and j, are complementary, and the same is
true of the angles which § makes with §" and
k_ we have

V=4l () =y - B

$ % = ,-’1 - (¥ kG)’=y‘l ~ B2,

and hence,

|Bicoga, + B, sin a,=~’ 1— B
(2.48) . |
(B;COSa;+ B, 8in a, =‘ 1—- 5, .

If now we combine the relations (2.48) with the
fundamental one,

B;‘—%—B;‘*B':I,

the quantities B., B,, B. can be obtained as the
simultaneous solution of the system of three
equations. The actual solution is left to the
reader. Our resuit is found to be

(249) V. =NV, (iG COS a, CO8 ay

L&}
+, c08 a sina +k; §in ay ¢08 a,),
where

(200 N = {1 —sin* ay sin® «,) .

2.8.8 The Windage Jump Vector J

In Chapter 1, it was shown that the windage
jump vector J has magnitude b 8., where b is
a constant depending on the aminunition (see
equations (1.55) and (1.86)) and &. i3 the initia}
vaw angle of the projectile, shown in Agure 38,
Moreover, the direction of J is the same es that
of VG w Va. Since 8, is a small angle, we see
from figure 33 that to a good approximation

8in -,
(2.51) . =1, (radians) .
Uy
Hence,
by,
(2.32) J = gin +, {vds sec) .
U,

Since the direction of J is that of Vo< V., we
have, equating unit vectors,
Lyl Ve
J VeV, sin -,

Thus, using (2.52) we obtain the following

‘vector expression for J:

b
2.63 J=e—ovw———(V 2
( ) _o ( 5 < V.)

For the 20-mm M97 projectile, V. = 2880 ft sec
and b = 102.4 ft sec. From equation (2.43) we
see that the maximum contribution of J to the
total lead e -~ e =sin.Ais

(Jy .. V.
Equation (2.52) shows that J will be a maxi-

sin -,

mum when , considered as a function of

U

.. 18 a maximum. But from figure 33 we note
that

SIn =, sin (- — 2.9

e 1.
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Figure 34. — The General Case in Three Dimensions
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o oo
sin -, 1
Thus, the maximum value of 18—,
Ky Vs
k-4
achieved when r, == — + 3,
?
Hence,
b¥,
(254) (Jws' V.= . x 1000 milg

is the maximum contribution in mils to the total
lead angle A, this maximum being achieved
for the gun angle-off -, slightly greater than
p0°. For 20-mm M97 ammunition and V,; =
250 yds, /sec, we find this maximum to be 10 mils.

1t should be noted from equation (2.52) that
windage jump is negligible for fixed forward.
fAring gunnety or for moderate gun angles-oft
LI i.e., f.5_1.5°.

2.89 Lead Angle Equations for Azimuth.
Elevation Top Deek Turret

2.80.1. ORIENTATION—In figure 84 (1 3y k.] is
8 right-handed set of unit vectors with origin
O fixed relative to the air mass, the vector k,
being directed vertically downward, The own-
thip soordinate system is shown relative to the
octant of a unit sphere and is purposely posi-
tioned in & dived-and-banked orientation rela-
tive to the space axes |, J, k . The sight line unit
vector e s dctermined by the angular coordi-
nates A, £, measured positively as shown. Angle
A is in the ownsnip azimuth plane determined
by the vectors LI angle E lies in the ownship
vertical plane determined by k. and the term-
inal aide of A. If the corresponding angular
coordinates of the gun-bore-axis unit vector e
sre designated by A., F., then the azimuth and
elevation leed angles, 1, and g for which we
geek formulas, are defined by

(2.55) A, —A.— A4, As=FE,.—F.
These lead angles are shown in figure 34 as

sngles CGD and HGP,. The plane of the ¢ircular
arc PH is parallel to the ownship azimuth plane,
s0 that arc PH is an arc of a small circle, The
rotal lead angle A, of which A, and a5 are the

DEFLECTION THEORY FOR AIR-TC-AIR_GUNNERY

desired components, is of course the angle
PGP, between e and e,

Since, as will be seen, the auxiliary angles
Ase, As, BN be found more directly from the
input date than the lead angles thamselves,
we shall express i, and A, in terms of Ay,
Asi. The latter angles are known as the sight
lateral and sight vertical angles, respectively.
They are defined geometrically gaa follows: A
plane is paased through e perpendicular to the
ownahip vertical plane (i.e., the plane of e and
k) and intersecting the latter in the nit vector
e. The sight lateral angle 4, ix then defined
a8 the acute angle between the vectors e ande,.
Similarly, the sight vertical angle i, i de-
fined as the angle between the vectors e and o

2.89.2, RELATIONSH!IP BETWEEN THE ANGLES
Ay, Ay and Ax, Ag—1f we apply Napler’s
Rules for right apherical triangles to triangle
BP.P, of figure 34, in which face angle P,BP,
{8 A, side 3.15. s 90° — £, aide .5,\3 is 90° —~

(E + As), and side P.B, is A,;, we obtain (see
Aigure 35)

8

PO
Figury 35 —=Right Spherical Triangle
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gin Agr=1s8in A, cos &,
sin F,

(8:59)

(2.57) = COB Ay sin (E + .\[p) .

where

(262) ML = f’mz_, Mg = L TH

in ﬁew of (2.58), these equations may Hﬂﬁi The vector M=r % T is then, by kn rules

writien a8
(2.58) aln 4, =sin A, cos (& + Ay)

(2.59) sin (F 4+ Ay) = cos Ay, 8in (B + Ag) .

2.8.9.8 THE SIGHT COORDINATE SYsSTEM—In our
work we shad assume that the radar anteans,
directad along the gun-target line r = re, tracks
the target parfectly. The dirsction of the radar
antenna then coincides continuously with that
of the sight line vector e Since the angular
velocity w of the sight line relative to apace is
represented by & vector perpendicular to e, it {s
cantenient to resolve w into components along
parpendicular axes lying in & plane normal to e
These axes are denoted in figure 84 by the unit
veetors |, and | and defined as follows: i is
norm.nl 10 @ And aq oriented as to coincide with
when ¢ {8 directed along Ly the vector tzh‘u
tﬁen complately deﬁned by 1, = & % 1,
three axes, [, 1., 1 | are thus mutually perpen-
dicular and constitute a moving right-hand
frame of reference which we shall refer to here-
after as the sight coordinate syatem. The angu-
lar veloeity o syatem relative to inertial
space will be noted by n,.

2.8.9.4. RESOLUTION OF THE VECTOR3 & X I AND
r ¥ r — These vectors, appearing in the basic
vector lead equation (2.43), give essentially the
angular momentum and the time rate of change
of angular momentum of a unit target mass
relative to the moving origin G (See figure 34).

r by M, we have

M=rex~w (}e-{—ré):r'e‘x

Designating r
é = rw.
Hence, if we denote w by

(260) W = o iL+¢°i‘ ig)

we may write

of vector analysis (see Appendix A), given by

. M
(283) M=—+2 XM
8t s -
where the first term of the right member indi-
cates & time derivative taken with respect to

the sight coordinate system. Thus,

M
234) T—ML L-‘ruﬂ.. -
If we denote the component of &, in the direc-
tion of 3 by a,, then, since the n.nsular velocity
£, differa from the anrulnr w of the sight line
by a rotation about the sight line, we may write
(265) K, =e 8+ w
Moreover, since w X M = O, we find that
(2.88) 8, xM=q, o XM

Substituting M from (2.61) into (2.88) and
combining with (2.84) as indicated by (2.88),
we obtain finally

-

M= (ML'FMJ@:) 1L+ (HI—MLMH‘-

i e R R 4

(2.87)

The angular rates =, =5+ can be obtained
physically by attaching gyroscopes with prop-
erly oriented apin axes to the rigid system of

axes iL i:, e, where e is along the radar antanna.

2.8.9.5"RESOLUTION OF THE UNIT VECIOR n
RELATIVE TO THE OWN:HIP AXES—THhis vector,
firat introduced in equation (2.29) is directed
vertically downward and is located relative to
the ownship system of axes by means of the
bank and dive angles, 2 and 8. Figure 38 shows
the basic coordinate system in both the “un-
banked and undived” orientation, (i, j, kc’),
and the “banked arnd dived” orientation, (i, i
kc). The triad (i, J. kG”) corresponds to the

1 1 1

A A T e T | A - A el W e A L8
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T

AT T s R~
Orisntation of the Unit Yector n j

i8are  2.8.9.8 RESOLUTION OF THE TOTAL LEAD VECTOR,
e e'—In figure 84, we note that in the circular
sector GP.P,,

(2.69) e = cos Ay e -+ 3in A il.

This follows from observing that, since the
radar antenna directed along e moves in an
azimuth-elevation system of coordinates, the
vector i, s perpendicular to the plane of angle
E. The relation (2.69) can be secen more clearly
from figure 37, which showa the sector GF,P,
1solated from the rest of figure 34.

Hence, we find that

€ - €& =Cos3.a; e - e —sinde x ips

47
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cr, since (273) M=M, I+ M,
e X o =1 8inAgy, e Xiy=1

that . o bl - =l .
(2.70) e x e, =i 8in Ap cos Ay (2.75) r—=re
oo A (2.76) sa=ai +aj,+ak.

In order to expreas a in the aight coordinate
gystem (e, i ,1 ], it is necessary to resolve each

of the vectors i, ik, in this system. From_
figure 34 we note first that I

F .

0=i‘mE—kqninE'
 =lgc084 + ] 0in A,
Hence,

ST e SMEEEE. e o

(2.7 e=iqcosAmE‘+jGainAc.osE '
—k_an &,

Similarly, /

Figure 37. — Resohstion of the Yector .,

(278) i =1 cosAsinE+ ] sindsink

2.897 A SUMMARY OF THE VaCTOR TERMS OF +k cos E
EQUATION (2.48) —We list here the individual. .. .. .

vector tarms of the fundamental vectur lead 279) | =i aind 4

equation (2.43), each expreased in terms of the (279) =~ g#ind +Jgcos 4.

component vectors e, i, i,. For convenience, A . '

equation (2.48) is rewritten here in a slightly ~ FOr ease of inversion the equations (2.77),
modified form a8 equation (2.71). (2.78) and (2.79) can be represented symboli-

cally by the following table of direction eosines.

@ °X°°=r_nm+%m+t_2f”“ T e TR
. Ft, ! rxd I iCOSAcansinAsinE.i_ginA\

- Tr > a)+ rv, PRV rV, (=80 j; 8in A cos E sin A sin E ¢pg A

‘ | ‘

(272) e e, =i, 8in \s ¢08 Agy kg } —sinkE sk g .
+ i sin au By way of illustration we see from the table that

48
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(2.81)

i —ecosAczosE'+i cosAsmE'
=iy sinA

v
g1 s g v g B g
B i

Combininz equations (2 76) and (2 80) we
obtain ) R
(2.82) a= c(a, cos AcosE +a,sin A cos
) = % sln E)
+a.sinAsinE'+a.cosE‘)

L BRI

+l. (-, sinA+a.cosA)

From (2 75) and (2 82) there results

(2.88) oxn—l. (-a, cos 4 sin B
, ~dy 8in A sin B -a, cos §)
-M (ageosA-n,linA)

(8.84) n= o(linaeonAeolE‘
" 4sinfcosdnin A cos K
o —cosBeosdsinE)

44, (sindcos AsinE

" 4-sinpeos $sin A sin £
4 cos B cos 8 cos K)
+l.(-stnuin4

|
1,

! ,
1

1

1

] (2.86) X B="r (i (-sin8cos Asin E
—slnpcosalinAsinE
- ' — cos 8 cos 8 cos E) +1 (~sin 3sinA
l ’ + 8in B cos & cos A)].

¥

In evaluating the vectors r X V,and rX]J,

I appearing in (2.71), we make the simplifying
assumption that the attack and skid angles, a,
and a; €an be neglected. This is a reasonable
‘assumption in that the aircraft for which the

present lead angle equations are being written

. (286)

s consldered to he a heavy, relativ
maneuverable bomber. We assume t|

V.=V, Hence, ,

-rxV =1V, [i cos A sinE
+i sin 4].

* From (2.58) and (2 76) we note that

ngr

) rx.l.. ex(_iaxa.).

. However, vector |

o X €, with the aid
84, becomes '

B joxo_lx(l Y A ﬁcsii

=k sinA.can.+i¢!fn

Hence, ,

e (1, X 8) =sin A, cos B, (8 X
R sin &, (e X

but from (2.80) we find

eXjy=-l sinAsinE 41 cos 4
o x k=1 oos K.

Thus, we arrive ﬂnally at the vector ex

bVer |
iy (-sin 4, cos

@287 rxI=

{ ]

—sin E, sin A sin E)A +1i, &in B,

2.8.9.8 LEAD ANGLE EQUATIONS FOR A
ELEVATION ToP DECK TURRET—Upon té
i, and i components of the individus
terms of equation (2.71), we arrive at
lead equations. They are:
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q y . e
(2.88) sin A c08 Ay, =— M+ —— (Ms — M, »,)) ST T e R
TV‘ 2
- qt,

— —— (a2, con A 8in K + a,8in A sin E 4 a, cos ¥)

mﬂr;;—-(ainﬁcoauinAsinE-}-binscosAsqu+cosﬁconc_gg§1
-~ - Ve bV, © =
P -—-‘;—eosAninE+-—-—-(sinA.cosE.can+slnE'.ainAninE)
. u,V, e
(2.89) sin A =_V [Mn+—(M:,+Mn.)]
¢

at; Pqt, ' '
+—8V—(a.conA—a,ninA)—- (sin3sin A — sin Bcos 3 cos A)

L ) [
Vs Ve
- sind — sinE,cos A, |
V. - 4V,
where T e T T linear aceeleration of ownship, components U :
Qy, 0y, Qs '
(291) ain F, = cos As 8in (F 4 Ay) true airspeed, V,

angular coordinates of the line of sight,

(292) A=A 4 A, E,=F1 A;, Aand £
and muzzle velocity, V,
(298) M, =1'w, Ms=rup windage jump constant, b.

The basic computer inputs are: o D] Other quantities appearing in the equations

"are derived from t asic inputs. The quan-
gy saymmrms ans g —anecoe oo weotities ¢ and ¢ in particular are usually obtained

from empirical formulas giving these quantities

. as functions of basic inputs. The manner in

angular velocity components of the sight  which ¢, is obtained theoretically has already
coordinate system: w,, wg, w, been considered in chapter 1.

range,

-

4 -
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Vy = 275 YDS./SEC.
Vg = 220 YDS./SEC.

45°

1667 YDS.

AYIBI S T

RADIUS 2257 YDS.

TO Go

Figure 38. — Particular Case — Computation of Lead Angles

Finally, we note that the quantity u,, appear-
ing in the windage jump terms, can be found
from (see figure 33)

‘u.’ = VDZ + Va2 + 2VOVo CO8 71,4,

or, in terms of the angular coordinates of the
gun bore axis, from

(29) u'=V, 4+ Vs +2V.V,co8 A,cos E..

30003 O-K3-85

2.9 An Example

By way of illustrating the computation of lead
angles in a particular case, let us consider the
coplanar attack shown in figure 38. Here, the
target traverses a straight line with a speed
constantly 275 yds/sec. and the gun-platform
sweeps out a circle of radius 2267 yards, travel-
ing with constant tangential speed of 220
yds/sec. At time ¢t = O their positions are G,,
T, with G, T, = 1667 yards; the initial approach

5!
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angle of the target is 45° while the angle-off of
the target is 90°. The position of G, T are shown
for a time interval of 15 seconds. Since the
firing tables, as was expiained in Chapter 1, give
¢; as a function of the future range, r,, it is most
convenient to assume these positions as future
positions and the times indicated on the figure
as impact times, Gravity drop will be neglected
in our computations.

The lead angle formula (2.15), which applies
here, can be written in the form

' - qM IV,
(2.95) 8inA=— ~ ——sainr, M=1r%.
rV, Ve

We shall take ownship speed V, to be 220
yds/sec and the projectile muzzle velocity V, to
be 2750 yds/sec. With coordinate axes zOy,
chosen as indicated, we write down first of all
the parametric equations giving the future co-
ordinates (o, ¥o,), (21, ¥r,) 88 functions of

the impact times t,. Thus,

zgl = 2287 [1 —cosyi] -

(2.96)
Yo, = 2257 sin ¢

Ve
Yo = — b, = 09745 t;
2257

1687 + 276 ¢
Ty = — —
(2 97)( , ﬁ
) l 275t
x,f T e——
v
t,=012,....... 16

Future ranges corresponding to these positions
are then found from

(298) »r = J (xo' — xrl)’_+ (Uol — 'Ur,)’ .

52

Since the input variables to equation (2.9
measurcd at the instant of fire ¢, it is nec¢
to compute t; in order that ¢ may be found

(299) t=ti—t.

The firing tables list timee of flight as a fu:
of present gun angle-oft y, present zenith
of the gun (angle between gun-bore axi
the vertical), future range r;, relative ai
sity p, and speed of gun-platform V,. 1
coplanar case of horizontal flight, the !
angle is constantly 90° (1600 mils), Vo
yds/sec and p will be taken to be 0.4,

corresponds to an altitude of approxin
29,000 feet. Therefore, to obtain ¢, frot
tables we need to know the present gun
off y. In lieu of this quantity, which is no
known, we use r,, the future sight-line ang
and thus obtain from the tables approx
values of ¢, to be used in (2.99). The an
can be read from a carefuily drawn figi
else computed directly from

/‘
: - mytanyg; —1
(2.100) tan 7= —
m,; 4 tan y
- ﬂe, - Ur,
~_ns m = .
x¢, — x,,

With the approximate value of ¢, thus obt
one computes, knowing ¢ and the present
dinates (o, ¥o), (2r, yr), the projectile ra
by using t in place of ¢, in (2.96) and (2.9
then employing the distance formula for

(2.101) "R= ‘l (xr, —Ze)* 4+ (Vr' — Y

To find the angle y we need to know the .
i, v, Vi, 88 i8 evident from the firing par
gram drawing shown in figure 39. The

chain of relations that leads to y is as fo
(angles are measured positively in a clot
direction)




o, g e

Figure 39. — Fundamental Angles

ﬂr, — Yo

(2.102) sinp=

(2108) v =—90° 4 p—y; ;

4, =GC=GD-CD=

J GA®* — AD*— AC cos (180° —v)

or

(2104) u,=Vocosy + -Jv,t— Vetsinv .
Finally, we note that

CE=AE — AC
or

¥, cos (180° —v) =V, cos (180° —y) —V,,
which may be written

0

u,co8v — Vg
V.
Once y has been determined from (2.106), a
more accurate ¢, may be obtained by using this
value of y in the firing tables. This leads, via
the chain of equations just written, to 8 more
accurate y. If this iterative process be continued,

both ¢, and y can be found accurately to as many
decimal places as the original data warrants.

Using this accurately determined ¢, in (2.99),
we now find values of the gun and target coor-
dinates at the time of fire from

(2105) cosy=

Ve
vy = t,
2257

(2.106) Zq = 2257 [1—cosy], yo = 2267 8in y,

275t 2756t

ZTr=—1667 + ——, Yr=—r

V2 P
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With this information we can now find the input
quantities r, r, M, q, l. We have

(2.107) "=J(Zo —27)-- (Yo — Y1) ;

mtany —1 Yo—Vr
m=—-—-—-

Yo — Zr

(2108) tanr=—-v-——r,
m-+ tany

The quantity m in (2.108) represents the slope
of the sight line referred to the fixed axes 20y
in figure 89. Hence the angular rate of rotation
o of the sight line is

i

® =.d—t- [arctan m]

and

MATHEMATICAL THEORY OF AIRBORNE FC

which simplifies to

(2109) M= (25 — 2¢) (Yo — ¥r)
— (Yo — ¥s) (26— 21) .

The dotted quantities in (2.109) are the time
derivatives of the corresponding ones in (2.108).
Finally, knowing u,, ¢;,, and R from (2.101), we
compute ¢ from the known relation

A7

The lead angle A can now be determined from
(2.96).

The results have been computed for this
example and are exhibited in table 2.1. Dis-
tances are in yards, time in seconds, » in radians
per second, A in mils.

J
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Table 2.1
Volugs At Time of Fire

Dimensions: yards, seconds, degrees, mils

|
R U, r r(deg)] M q l @ | v(deg) | A(mils)

———

1805.618/1007.043(2193.076] 76.087| 20082|1 33350.3335 .0060| 50.888| 58
548.888| 075.548(1883.921] 83.308) 40078/1.20750.2075 0113 68.141] 41
123.385| 044.048(1620.314| 01360 42308|1.27600.2760] .0160| 76.162] 30
7.331] 011.1081408.475| 09.224] 3967ol12408b0.2498| 0198| 84511 2
184.302| 870.856(1230.480(107.518| 30023|1.22460.2246| 0204 02.625] 18
81.321| 849.800(1084.100(115.308] 204311.1841/0.1841| 0174/100.721] 18
164.471| 824.508| 968.504(129.443|  86741.16480.1648) 0001107993 22
091.048| 804.578| 877.714/128.716|~ 4000]1.15260.1526|~ 0082114007 34
037.924] 790.567) 808.649|133.755| — 16086(1.1463(0.1463| — .0288118.660] 51
104468 782259 758.663137.330 —20212|1.1380(0.1386|— .0s08|121.487] 70

$91.033( 780.018 727.338(139.262 —41338|1.1350{0.1350| - .0781(122.311 92
$08.206( 782.973| 715.369(130.623| —52769|1 1385/0.1385(-.1031(121.271 113
§29.033| 780.660 723.917(138.734| ~ 64155 1.142‘340.1424 —~.1224|118.975 133
884.303( 798.832| 753.677137.127|—74955(1.1564/0.15584| — .1320|116.004 151
764.805) 807.804| 803.896(135.341| —85526(1.17260.1726|—.1323]113.079 166
§70.114/ 814.908| 873.797/133.774|— 96219 1.1802(0.1802(~ .1260{110.854 174
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PURSUIT COURSES

3.1 Introduction

The problem of determining the equation of
a8 curve of pursuit is a classical problem in
mathematics. Historically it dates back to the
time of Leonardo da Vinci. One classical state-
ment of the problem was to determine a dog’s
course as the dog runs toward its master who
is walking along a straight path. The military
aspects of the problem were brought into prom-
inence in connection with aircraft combat
wherein one aircraft is attacked by sanother
possessing guns capable of being fired in a fixed
direction only. In order for the one aircraft to
keep the other under continuous fire, it must fiy
some kind of a pursuit course. The problem
appears again with the invention of homing
missiles which continuously change heading
under radio, optical, or acoustic guidance un-
willingly aupplied by the target.

The importance of pursuit courses in air-to-
air combat is two-fold. The attacker, flying an
aircraft equipped with fixed guns, must under-
stand such a course in order to determine
whether or not his aircraft can fly the required
flight path. He also must rely upon his knowl-
edge of this flight path to give him inputs to
his fire control system. The defender uses his
knowledge of the flight path to determine the
future positions of the attacker and thus estab-
lishes the required leads for his guns.

In aircraft combat there are four kinds of
pursuit courses. To be specific, let us consider
a fighter aircraft equipped with fixed guns in
combat with a bomber equipped with flexible
guns. Thus, we consider the bomber to be pur-
sued and the fighter to be the pursuer. The
fighter’s guns are assumed to point in the direc-
tion of its flight.

If the fighter pilot flies his airplane in such a
way that his guns are always pointed directly
at the bomber, he is said to fly a pure pursuit
course. In such a course, the mush of the air-
plane and the lead that the guns must have are

LAt el g, OOV s W AN CT T T

ignored. If the bomber is flying a straight and
level course, the fighter’s motion lies in a geo-
metric plane with the bomber’s course and this
plane is called the plane of action.

If the lead is taken into consideration, that
is, if the fighter flies so that his guns are always
directed at a point ahead of the bomber by the
required amount to secure a hit, and the mush
of the airplane is ignored, then he is said to fly
a lead pursuit course.

1f the fighter flies his airplane in such a way
that hie guns are always pointed directly at the
bomber and his flight path is determined from
the angle of attack and other aerodynamic con-
siderations, he is said to fly an aerodynamic
pursuit course.

1t the fighter flies his airplane in such a man-
ner that his guns are always pointed ahead of
the bomber by the amount required to score &
hit, and his flight path is determined by aero-
dynamic considerations, then he is said to fly an
aerodynamic lead pursuit course.

The complexity of the courses increases in
the order defined above and thus it is advan-
tageous to consider the simpler pure pursuit
first.

3.2 The Space Course for a Pure Pursult
Attack

In analyzing pursuit courses, there are two
types of courses to consider; one is the actual
space course traversed by the combating air-
craft and the other is the path of the one
aircraft relative to the other. Let us begin by
considering the space course and let it be re-
ferred to a set of rectangular coordinate axes
which lie in the plane of action. See figures
41 and 42.

Let (zg, ys) and (xr, yr) be the coordinates
of the bomber and the fighter, respectively, at
any time t. Since the fighter is the pursuer, we
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are seeking expressions for his coordinates in
terms of known quantities. The definition of a
pure pursuit course specifies that the equation
of the tangent to the fighter's path must be
satisfled by the bomber’s coordinates. Thus, the
equation for a atraight line yields

B1) (Us—wr)=m (25— 25),

where m is the slope of the tangent line. The
slope of the tangent line is, of course, the deriva-
tive at any point on the fighter’s path and,
consequently,

dyr 1}'
(82) m= = —
d:l:, :i:,

" Figure 41. — Coordinates

so that equation (8.1) becomes

vr
(22 — 2,)

(88) ¥Ys—¥r=
Zr
or
Ys — Yr

Tg — Xp

(84) V=2

It is easily seen that the forw‘t,i;'& Véi&dty of
the fighter, V,, is given by

(85) 2 + ' = V.
The substitution of (3.4) into (3.5) yields

L2 n s was g s magy
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ey

g

sy

Fo

F (xg,Y¢)

i
j s Ye
!" A
N
i Yo
F 0 Figure 42. — Coordinates for Pure Pursuit
2
[P e 1+( il )’ _y
o — - (8.8) = (zs—2r)t+ (s — )

or, upon simplifying,

. v (s — 2r)*
37 =z =V§
&0 r (25— Zzr)* 4+ (Ma — yr)?

(x5 — zy)?

.
L1

— sz

ik

The quantity r is the range between the bomber
and the fighter at any time t. Equation (3.7),
therefore, yields an expreasion for the time
derivative of the fighter’s x-coordinate,

F
(zp — Zr) 5

(3.9) zr=

59




b

fenmme awm i

Ciambareom - varemes N

NAVORD REPORT 1493

PSSP W SRR TSI SR

MATHEMATICAL THEORY OF AIRBORNE FC

similarly, from equation (3.4) we have

1
(Vs — yr) .
r

Equations (3.9) and (8.10) form a system of
differential equations which describes the mo-
tion of the fizhter in terms of the coordinates
of the bomber, the fighter's velocity and the
range. The right-hand side of both equations
are thus functions of time, t, the independent
variable. For certain restricted cases, these
differential equations may be solved explicitly;
however, in general, it will be necessary to solve
this system numerically, . ..

As a special case, let the course of the bomber
be taken along the positive y-axis and let its
coordinates be (0,0) at ¢t =0. Let the coor-
di: of the fighter at t=0 be given by
(zhy y, ). Let us further assume that the
bomber and fighter are both flying at constant
speeds, V, and V,, respectively. The situation
is illustrated in figure 42. In this case, it is pos-
sible to obtain ¥ as a function of z analytically.
Since 2z, — O and y, = V¢t we have from equa-
tion (8.1)

(810) y,=

dy,

(811) Vit —yp=—
dz,

Ty .

- ~Since the bomber coordinates are specified,
we may for convenience drop the subscripts F
and write (8.11) in the form

(3.12) y= Vst + vz, where y = ——

The variable ¢t may now be eliminated by use
of the relation
(3.13) s=Vytort—=238/Vy,

where s is the arc length along the fighter's
path. Equation (3.12) then becomes

(314) y=cs + vx. where ¢ = ViVy.

This equation may now be differentiated with
respect to z to yield

60
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(816) zy" =¢ 4 14y

or
y" c
(3.16) = ’
‘/ 1492 z
since 8’ = — 'I’ 14y,

Performing the integration in equation (8.16)
we find

ln(y'+J 1+y")=tnz¢+lnk,

kaz,

or
817 v+4y 1+v'=

where k is a constant of integration which may
be determined from the initial conditions z = z.,

V= ¥Y/Zs.
Equation (8.17) is now solved for ¥ to give

(817) ¥ —-i{ lw-—]

and integrated again to give
(818) * . xi1+e 1 xl -e ]
. v= [ 1+c¢ "k 1—¢
+Cites1,

»* 1
}[k—-———taz]-i-c ife=1.
2 k

Thus we have y as an explicit function of z
and the pursuit course of the fighter is deter-
mined.

As an illustration, the space course was com-
puted for the following set of conditions:

Vs = 220 yds/sec.

z,o = yno = 0.

V, = 275 yds/sec.
xpc = 500, Upo = 1000.

First we obtain ¢ = .8, k —= 029362086,
C = 1706.7422,

l'*v_l

L
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[
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Figure 43. — Pure Pursuit Cowrse Example
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The values of the coordinates are given in table tion of equa.tions (8.9) and (8.10). A Runge-
8.1 and the course is shown in figure 43. The = Kutta method of solution was used with at = .2.
course also was computed by a numerical solu- The values are shown ie table 8.2. * .

Table 3.1

Pure Pursuit Course l B
y = 008156135 z 1 *— 85.143817 £ -14-706.7422 . |
Vy =220 yds/sec.; V, =275 yds/sec.; ¢ = .8; z, =500 yds; yp, = 1000 yds. '
z y t zr y t ‘ -
500 1000 0 48 532.15 2.52
450 90452 .30 40 534,92 2.54 D
400 818.26 78 35 538.28 2.56 F
350 741.58 1.00 30 542.36 2.50
300 674.90 1.39 25 548.34 2.61
250 01881 1.88 20 583.83 2.84 ‘
200 574 14 1.9 1 561 47 2.68 I |
150 542.17 2.12 10 572.30 2.73 ;
100 525.34 3.32 5 580.41 2.78 |
50 520.88 2.50 0 708.74 —_ !
Table 3.2
Pure Pursuit Course E .
. ) V’ « V’ 5 ;
Ty = — 2z} Yr=———(Us—~Vr)itp= Vst ! |
r r - '
Initial Conditions SBame as for table 3.1 - E |
¢ Vs z, Yr r zp ilr '
0 0 500 1000 , -123.0 —~246.0 -
.2 44 476 951 1024 -127.8 —243.8 E _
4 88 449 903 930 —132.7 —~240.8
8 132 422 855 837 —138.6 -237.5 i
8 176 393 808 744 —145.4 —-233.4 s
1.0 220 364 761 652 —153.3 ~228.3 ’
.2 264 332 716 561 -162.7 —-221.9 .
4 308 208 673 4n -174.1 —212.0 ;
8 352 262 631 383 —188.2 ~200.6
8 396 223 593 297 —~206.0 -182.2 l
2.0 440 179 559 216 —229 0 —-152.3
2 484 131 534 140 —257.0 - 97.8 \
4 528 77 524 77 —274.7 13.6
6 572 29 544 39 —109.3 180.5 '
8 616 7 591 26 - 73.9 264.9
3.0 660 1 645 15 - 11.1 274.8
3.1 682 — 673 9 - 92 274.8
3.2 704 — 700 — — 275 '
62 L
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Figure 44. — Yector Diogram

The extension of equations (3.9) and (3.10)
ts & three-dimensional rectangular coordinate
system (z, y, z) is straight forward. We now
have (Zs, Vs, 2s) 8and (Zr, ¥r, 2zr) Tepresenting
the coordinates of the bomber and fighter, re-
spectively. The differential equations which now
define the fighter’s motion are given by the fol-
lowing system:

B (xg.y8:Z8)

(3.19)

Ty = (x5 — zr)
T

. Ve

Yr= (Vs — ¥r) >
r

Zp= (25 — 25) ,
r

Ve
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Figure 45. — Polor Coordinate System for o Deviated Pursuit

where

(820) = (25— 2)'4 (42— ¥)*
+ (25 — 2)t

and

821) 2z’ + ¥+ =V,

Equations (8.19) are easily derived if we use
vectors. Let 1, }, k be unit vectars along the z,
¥, z axes, respectively, see figure 44. Then the
vestors from the origin to the fighter’s position
and bomber position are

- (822) F=uzid+ 1)+ 2/k,

(3.28) B =1z + ¥s) + z:5k.
The range vector is

(324) r=F-—-B

=@~ )i+ (Yr—¥s) j
+(zp —23) k.

Differentiating F we have
(8.25) F= V= -‘l.bl + &rj + ‘rk

For a pursuit course

V»
(826) V,=——r
r
v,
=__[(a:. — )

r.
+ Wr—w) i+ (?r — 23) k]‘

If we now combine (3.26) and (8.26) and write
the components we have the system (8.19).

3.3 The Space Course for a Lead Pursvit
Atack

The differential equation of the pursuit curve
with lead in rectangular coordinates can be
derived in a manner similar to that of the last
section. However, the equations are very ineffi-




Figure 46. — Vaecior Diagram

clent and the most desirable approach is to
obtain the relative course of the pursuer and
then to convert to the space course if it is
needed. As was pointed out in section 2.2, in &
relative course the origin of the coordinate
system moves with the bomber so that the rela-
tive coordinates are simply the space coordinutes
of the fighter less the bomber's coordinates at
any time & Thul, it X,, Y,, z;, are the ﬂxhter’l
. .relative coordinates, then

X,:z,—a:.,

B27) ( Yr=¥r—¥»

Z, =2y — 2p.

It is then clear that if the fighter’s relative
coordinates and the bomber’s space coordinates
are known, then the fighter’s space coordinates
could be found by solving (327) for z,, ¥r
and z,.

3.4 Equations of the Relative Course

in the mechanization of fire control
ment it is the relative course of the
which is of the greatest importance. This
tive course is best described in terms of a
coordinate system which has its origin a
bomber. Let us, therefore, choose such a 8
and measure the angle, 9, from the
of the longitudinal axis of the aircraft

figure 46.

Pursuit courses with lead have often
called deviated pursuit courses, a more
term than lead pursuit courses. Thus, the
at which the fighter aircraft is flying away
the direct line to the bomber is calied the
of deviation, 3. This angle is, of course, th
angle in an exact lead pursuit course. The
tion angle is specified separately as
function of 8 and r. If 3 = O, we have a
pursuit and if 3 is a constant, we have a
lead pursuit.
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The polar radius r also is the present range or,
at any time {. From the vector diagram of

figure 486, it is clear that the rate of change of : tan'¢ ¢
the range is (881) r=r1r, —m—;
sin @
dr . o
828) —=r=_V 34V 0, where r, inciudes all constants of integration. It
( ‘ dt r roosd+ Vacos is casily seen that if we let ¢ = 90°, r, = r or, in

other words, r, is the range on the beam; that
is, the fighter is directly abeam of the bomber.
Equation (8.81), ia then, the polar equation for
a relative pure pursuit course. This may be
changed to rectangular coordinates by the usual
transformation equations

and the transverse component of relative veloc-
ity is given by

de .
(8.29) f-d—t=f0= V’Sina— V]linou

i i oo Bk 7 s TR e el .

X=rsins,

(3.82) ,
. It we divide equntlon (328) by (8.20) we | Y =-rcosd,

dr V, cos 3 4 Vs cos 0 it we choose the X, Y axes as shown in figure 45.

r Vrysind — Vysing For a variable lead pursuit it is first necessary
to determine the deviation function. Let ‘us,
—cosd 4 ccosd therefore, consider the ballistic triangle of
ds. figure 47.

—
co
&
(=

-
"

sind —cainé

_ The law of sines applied to triangle FBB,
This equation {s integrable for varfous devia-  yields
tion functions. If 8 = O; i.e., pure puranit, we

(8.88) sind=—3sing.
dr —1<-ccosd r
= do
r —esiné Let ¢, be the time of flight of the bullet over
the future range r; and & be the average apeed -
1 of the bullet. Then we have
= ( ——c8c 4§ —cot d ) de
¢ (334) BB, = V,t,
and,

and

1
Inr=—Intan } 06— Insind+Inr., (836) r =1ut.

c
Substitution into (8.33) yields
tant/c § 6 :
=in———4inr,,
sin é (8.36) s8ind=c,s8ind,




where

] V‘ -
(8037) c; —

P
TEI

Straight subatitution into equation (3.80) yields

X B, W M T K T S

dr dl-—c,’sin'&-{-ocoso
= dé

or
W
1 cos
do= de
et—1 o.8iné
et T | J 1—0¢*
= ds.

R

A g’—-? JO;’-;S’

(3.38) ’ :
r (c;—c)sind
To obtain the last expression, we need to prove
which may be redused to the identity |
R dr ' | o .1 | .
(3.89) ——= cos 8 -6yt
r _ .
' c;8in ¢ .
-O—-O—[Jcnﬂ—ccdl—owtodl .
-

This equation may be integrated; the first
integral on the right-hand side, however, needs
some manipulation. Let us make the substitution

cos #
or scosd=o0,co80.

‘=eg
cos §

The differential relation
dscosd —esin8dd=—c,8inddé

may be solved for dé with the aid of the fact
that from sin 3 =¢, 8in 6 we have d8 = zds.
Thus we have

dscos 8= (z*sin2 —c,8in0)do

("_1) C;Sinﬂdﬂ

———

*We assume now that o, is a constant; this is noi
precisely true since u is & function of the range. How-
ever, it is a usable approximation.

MW 0-W-8

which is more easily accomplished by working
on the right-hand side, making the substitution
for 5. The inteml[ [cs0t 8 — et do then
becomes

cos d
l;:‘-t [[uc'!—-c“]ldtsfmd{

e ey v e Cretticory 8 . TRRSEY: toesomr el e

( 1) [ &
=(e?! — (2 »
” (et —2*) (1 -3

which may be solved by the usual method of

partial fractions to give
142 ) 01/3
1—2 |

= (25

For convenience in writing, let ¢; =¢ ~ ¢,
The integration of equation (3.89) then yields
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nma.—wmmu.
: - ) ¢
(8.40) l.:'.:'l_[“(e, ‘) (1+ ) ] -———-tulino
r, 6 648 1—13 s
or | A .
841 (eou—eou (eou+c.eou O | I O 2 e
=f. T — —— » W‘
’ eou-{-eolv) a—c,eoﬂ) sin* o
&”wwwm, A w 1 o
where r, is again the. constant 6? integration wheneo
that becomes the range on the beam. :
tanfo\ 1/(e—4)
If 8 is small, & useful approximation is ob-  (3:42) "="('m,.)
tained by letting cos 3=1, and if we insert o
this approximation and the expression (3.36) '
into equation (8.30), we have
o -1 R L
r _ + ccos P (848) r =7, Yy )
r (e, — ¢c) 8in @
This is the approximation which was made in
1 most of the analyses carried out during World

(csc® —ccoth) do

c—6C
which may be integrated to give
r

In—=
f. G—Gl

(Intan} 0 — c Inain )

68

War II.

In the above equatlons, 7, is the constant of
integration which needs to be determined. If we
let 8 = 90" in the above equations, we see that
r=1, or, in other words, r, i3 the range on
the beam.
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Table 3.5
Example of Relative and Space Course in Deviated Pursuit
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r
Same Conditions &;ld units as for table 3.4
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SPACE CQURSE OF FIGHTER. .
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3.5 Time as a Parameter

The method of solving the pursuit course
problem given in the last section has the disad-
vantage that the solutions are not given explicit-
ly as functions of time. It is necessary to have

72.

this dependence on time expressed explicitly for i
many problems in fire control work and also for

computation of the space courses. For example, -
the space coordinates may be found from the
relative coordinates by using the relation (3.27) )
where the bomber’s coordinates are given as —
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functions of time and thus the fighter’s relative  where &k is the ccnstant of in
| coordinates also must be found as functions of determined by the initial cond!
i time. In determining the lead to take against a  have ¢ as a function of 6, fron
L5 fighter flying a pursuit course, one usually best be obtained for a given
-~ matches the time along the course, from a means.
, ‘ chosen present position to the required future
u position of impact, with the time of flight of Another method is to expand
the projectile over the range to this future series valid in the neighborhood
r‘l position. lar point about which the expar
P Thus expanding r and ¢ about
There are many ways for getting points on a  the well known Maclaurin serie
pursuit course which are labeled with the ap-
propriate time, but to find the range or angle-off

-

I as explicit functions of time is another matter. — . -
_ 'Thus ¢ may be obtained as a function of # but r(t) =r(0) +rlo)t +r(
: the inverse solution is not readily obtainable. P S A T
| The impHcit solution is found by knowing r as t
a function of ¢ from (3.41), and upon substi- + r(0)—-
tuting it into (8.20) the time ¢ is then found 8!

L as d:r function of 0‘ by : simple integration. Con-
sider, for example, ¢ t . “
1 e s = O, wharhe cuas of & pare pumull 4y — 0(0) + #(ot + 0

S i

L me b e e e e TSN

- tan* { ¢ + 0(0)—
. L P e —— 81!
| sind
- Upon the substitution of this sglution into To obtain these expansions ¥
equations (3.29) we have the values of r and 6 at t =O.
{9 L. . are then obtained by succeasiv
i bl an /¢ de of equations (8.28) and (8.29)
1l (3.44) f.I h:h:.] =—Vysine series converge so that » and ¢
| | 7 at - - - any t to the accuracy desired.
-1 or Still a third and perhaps thg¢
to solve the system of differ
— e . _ given by (3.28) and (3.29)
(845) . [tan “408in~ 0 ] d = — Vidt. process. Such a solution will,
‘ values of r and 4 at chosen in
Equation (3.45) may now be integrated by
employing the substitution _
27 2dZ 3.6 The Acceleration of the
tan 40 = Z, sin § = ,de =

— L) L ‘
1 + Z: 1 + Z byftle?uwdur? 'Of.Hlt,.
we obtain ’I \yai "
.- .. n analyzing pursuit course
v |tanve-r o tanc*1 }o to determine the extent to

t=k— 2V, 1 + 1 curvature is restricted by tl
-—1 ;+ 1 effects on the pilot in flight an

¢ and aerodynamic Jimitations of




where R is the radius of curvature of the space
curve. The radius of curvature may be expressed
in either rectangular or polar coordinates. For

rectangular coordinates we have
) . i
(8347) R= t+v

I” nl

and dor pure pursuit we have by equation
(8.18) and (8.17a)

1+t 2

(848) R= ==+
AR LR
2

1 ket + 1 ]'
=—x S —— .
de [ ke

For pure pursuit we also have

Vs

(849) R=——+
9

since the tangent to the circle of curvature also
is the terminal side of angle 8. Thus in polar
coordinates the radius of curvature is, using
(8.29) withs =9, '

V’ Vrr
R = =
Vs .,
—8iné
r

(3.50)

Vasinéd

For deviated pursuit courses (lead pursuit)
with sin § = ¢, sin § we have
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begin in this section by considering the normal v,
acceleration end the centrifugal force actingon  (8.61) R=—-—
‘the plane and pilot. 8 —0
R V’

It is well known that the normal acceleration = p-
may be expressed in terms of the radius of Ve c—clsingll — cos §
curvature, , le—eil cosd

” r
(8.46) = normal acceleration = i cosd
[e—e]siné [1 -
coss

The normal acceleration, a, is usually ex-
pressed in unite of gravity called “gees”, le.,
ratio of acceleration to the acceleration of grav-
ity, g. This acceleration is due solely to the
curvature of the course and does not include the
ever present acceleration due to gravity, which,
of course, is one “‘gee”. Upon combining (8.46)

~ and (3.49) with (8.29), we find, in the case -of

pure pursuit,

Vy Vsaineg
(8.52) a —_— —; .
or -

For lead pursuit,
VP. [0 - ci] e, co8 b
(8.58) ¢ = —————3sind{1 — ‘)
gr cosd

It fs, therefore, possible to calculate both the
radius of curvature and the normal acceleration
for these pursuit courses.

Equation (8.52) mnay be solved for r to give
Ve Vs

(8.64) r=
ga

sinéd,

an equation which represents a family of circles

V. Vs
of radii

, each circle being tangent to the
2ga

straight line path of the pursued bomber. By
varying the parameter, a, we may plot members
of the family and then superimpose the pursuit
courses upon this plot. From such a graph we
can read off the normal acceleration (or load)
at any point on the pursuit course. See figure 50.
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- 8.6.1 Maximum Acceleration

If we consider V,, ¢, and ¢, as constants, the
normal acceleration is given by equation (8.53)
as a function of 6, r, and 8. Since both » and 3
can be expressed as functions of 4, see equations
(3.41) and (8.36), respectively, we have the
normal acceleration as a function of ¢ alone.
Thus, there may exist a value of 8 for which
the normal acceleration is a maximum. That
this is actually the case can be verified by taking
the derivative of equation (8.58) with respect
to 0, setting it equal to zero and solve for 8; the
usual caleulus procedure for finding the maxi-
mum of a function. It is easily accompiished in
the case of pure pursuit; in which case we find
that the maximum acceleration is achieved at

the value ¢ = arc cos 21_c Under the Approxim;-

tion that the cos 3 = 1 we find that the maxi-
mum normal acceleration occurs at the value

6 — 4 c*— (2¢,*—8ee,) (ce, —et—1)

4 = are cos .
&c‘—zcg.

The existence of a value 8, for which the

normal acceleration is a maximum, enables one

to find a limiting relative pursuit course on
which, for a given normal acceleration a, the
acceleration achieves the maximum value a. This
course i8 limiting in the sense that it divides
all pursuit courses into two groups, the one
containing all courses on which the normal
accelerations never build up gresater than a, the
other including only courses- on which the
accelerations eventually surpass a.

Let us consider pure pursuit courses. Since
maximum gees must be achieved for points on

the line 8, = arc cos (l.), the limiting pursuit

2c
course divides the plane into two separate
regions, each containing curves of one and only
one of the groups defined above. Geometrically,
the limiting “5g” pursuit course is tangent to
the “5g” circle at the point (r,, #,), wherein
r, is obtained from equation (3.52) for ¢ =4,.

Thus, since 4, = arc cos (.;.). we have
¢
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and,
V’ Vg
a= Sin 01 »
an
or, A -
( Ve Vs ) (4 de' — 1 )
ry=| ———— R
8g 26
fore =8.
Since

ro—=1r (tan § 6:-cgin g

we have

ro=1r, (tan § 9,)-'/csin @,

_(VrVn) (44(:’-'—-1)
"\ /. \ 2.
. . el - 1 -
(2c—1 "u‘( —
) ()
V,v.(w—n(zc+u ol

Thus, the equation of the limiting “ng” relative

~ pure pursuit course is

1

V,V, (4c'—l)/2c+1 e (tan §9)
\2c—1) sin ¢

alw®

r=
4ngct

B =

| 1

Ll
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3.7 Aerodynamic Pursvit Course

In the pursuit courses considered thus far it
has been assumed that the projectile Jeaves the
fighter aircraft in the direction of the aircraft’s
motion. Thus it has been tacitly assumed that
the aircraft moves in the direction in which it
is vointing. However, it is well known from aero-
dynamic “considerations that there exists an
angle, the angle of attack, between the zero lift
line of the wing and the direction of motion. The
zero lift line is a hypothetical line through the
wings in the general direction of the longi-
tudinal axis ; in steady flight, the airplane would
move along this line if there were no gravity
acting. Since the guns are fixed in the aircraft,
there exists, then, an angle of attack, o, between
the gun bore axis and the direction of motion
of the aircraft, and the devistion function, 8,
discussed in the preceding sections, should have
a component due to this angle of attack. If the
gun bore axis is parallel to the gero lift line of
the wing, then a is the usual angle of attack for
the aiveraft. However, the gun bore axis is
usually offaet from the zero lift line to allow
for gravity drop or other considerations so that
the angle of attack of the gun bore is not neces-
sarily the angle of attack of the aircraft wing.

The treatment of the problem of aerodynamic
pursuit courses may be divided into two parts:
(1) the equations of motion of the aireraft and
(2) the canditions of pursuit. In order to find
the equations of motion of the aircraft, it is
necessary to consider the usual force system
acting upon the aircraft; i.e., the forces of lift,
thrust, drag, and weight. The conditions of
pursuit then constrain this motion and we have
& typical dynamic problem with constraints. If
it is possible to obtain a sufficient number of
equations to determine the variables under con-
sideration, the problem is solvable. If not, it
may still be possible to solve the problem if
from experimental data a sufficient number of
logical assumptions can be made which lead to
consistent equations.

3.8 Attack in a Vertical Plane

The general problem is indeed a complicated
one and for this reason it is advantageous to
begin with a restricted case. Let us, therefore,

consider an attack made in a vertical plane by
a fighter on & bomber which inoves in a straight
and level flight path at a constant speed.

Let us assume that the gun bore axis coin-
cides with the thrust axis of the fighter aircraft.
This is no real restriction since if the two did
not coincide, the equatioms would be changed
merely by inserting a constant angle. We shall
now use the following notation: (See figure 51.)

L = the fighter’s lift vector, directed nor-

mal to V,:

D = the fighter's drag vector, directed
along -V,: 7

W = weight of the fighter, directed ver-
tically down;

T = fighter’s thrust vector, directed-alonz
the thrust axis;

V» = fighter’s veloéity vector, directed
. along its flight line;

Vs = bomber’s velocity vectdr. directed
along its flight line;

y= angle from the horizontal reference
line to the flight line;

8 = angle from the horizontal reference
line to the sight line;

a = angle of attack of the gun bore line;

= angle from the thrust line (gun bore
axis) to the flight line;

a, = angle from the zero lift line to the
thrust axis of the fighter;

a4 a, = angle of attack of the fighter mea-
" sured from the zero lift line;

R = radius of curvature of the fighter's
path;

% = average speed of the projectile over
its path; :

p = relative air density.
From the force system shown in figure 51, we
can write by Newton’'s second law the equations

of motion, for motion along and normal to the
flight line. Thus,

17
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HORIZONTAL REFERENCE LINE

Figure 51, — Force Diagram

¥

(8.55) Vy=Wsiny+ Tcosa— D
g

and
w v,

(8.56) —-—-—:L-{-TSiﬂa—WCOSy.
¢ R

Now the radius of curvature can be written in
terms of V, and y; in fact,

1 1 dy

R Vy, dt

Hence, equation (3.56) may be written in the
form

78

asnds Vg

' w .
(857) ——V,y=Wcosy—L—Tsina.
9

There also are two kinematic equations of
pursuit which are obtained by considering the
motion along and perpendicular to the sight
line, r, and which are expressible in terms of
the polar coordinates r and 4. Thus, we have

(8.68) r=Vsco88 — V,cos (f-y)
and

(8.59) 6=— .l[V, sin (y — 6) 4 Vpsin 0],
r
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HORIZONTAL REFERENCE LINE

Figure 52. — Angles for Pure Pursvit

In pure pursuit, where we do not consider
any lead or ballistics, the gun bore axis (thrust
line) coincides with the line of sight so that

(8.80) y—06=a or 0=y —a See figure 62.

We may then eliminate 4 from equations (3.58)
and (8.59) and together with (8.55) and (3.57)
we have four non-linear differential equations
to determine the four variables V, 4, a, 7, a8
functions of time. Before proceeding, we must
first determine the aserodynamic constants for

~ the fighter airplane in question at a fixed throttle

setting. This is accomplished from the weight
and geometry of the airplane and its perform-
ance values of propeller efficiency, maximum
engine brake power, and the corresponding
maximum level flight speed at a certain altitude.
With this knowledge, we have formulas which
enable us to obtain expressions for L, D, T,
and W.

The four differential equations must be inte-
grated numerically, and, consequently, we need
to know the initial values of Vy, y, «, and 7. The
quantities V,, y, and 7, may be assigned at will
to give a family of cases. The initial value of «,
however, has a “natural” value for a given value

of y. This natural value can be found by plotting
y against time for the first second for a few
arbitrary choices of a, usually between 2° and
12°, The family thus obtained will funnel into
one curve which then is extrapolated back
linearly to give the natural value of a.

For a lead pursuit course we need to account
for the ballistic effects. In this case, the gun
bore axis is pointed so that the projectile leaving
the gun at a muzzle velocity of V, will travel
the vector diagonal to the point of impact as
shown in figure 53. In order to score a hit, the
projectile’s motion normal to the sight line
should be equal to the bomber’s motion normal
to the sight line during the time of flight. If we
let n be a unit vector perpendicular to the sight
line, then this condition states

(3.61) t,(@) *n==¢(Vs) *n,

where 1 is the average velocity of the projectile
over its impact range. If we let u=V, 4V,
where V, is a calculated average speed vector
of the projectile which can be assumed to be in
the direction of V,, then we may write equation
(3.61) in the form

(3.62) -V,ysin (e—A) +V,s8in A=Vpsiné.

79
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Figure 53. — Velocity Diogram

From figure 51 it also is elear that

(363) y—6=a—A
or
A=a+4+ 00—y
80 that A may be eliminated from (3.62) and,

if V. is known, equation (3.62) may be used to
solve for a.

3.9 The Determination of the Aircraft
Constants

In order to solve the system of equations
given by (3.55), (3.57), (3.58), and (3.59), we
need to determine the expressions for L, D, T

80

and W. As was mentioned in the last section,
the theory of aerodynamics furnishes us with
formulas for these expressions if we know the
geometry of the airplane and its performance
characteristics. We shall not derive these ex-
pressions here but will adopt them without
proof and refer the reader to a standard text
on the theory of aerodynamics. It shall be qur
purpose here to exhibit the formulas and indi-
cate their use.

The aerodynamic forces L, D, and T are ex-
pressed in the following form:

L=*P¢ VI.SCL;
(3.64) D=4%p. Ve SCyp;

T = 550 Pp/V,;

PR T ST S RO TAP. < ARWAE - e eETme o e M M e S GRS TR AL ST S e Y e T R PR
L2 ’ 50 4 M IR T - T T
. ~ » - o .
S ¥ JOSUT - e wmenen ot VL Sl i
-, ¥,
. ~
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where
C. =1ift coefficient
=K sin (a4 a,) ;
3
065 { c,= a4 2.
B
. 2=
K=c—r-—
142/R
and

A, B = constants for given airplane,
2b®
B = H
8
= wing area;

= brake horsepower of engine:
1 h-p; —1 550 ft.-lb-/m.;

= air density;
s = propeller efficlency;
b = wing span;

A =— aspect ratio.
S

v U

In the computation, new constants are usually
introduced into equations (8.64) which are de-
fined by

e = pa K S/2W;
¢, = ps AS/2W ;
(8.66)
Cy = Pa K'S/zBW;
¢, = 550 Py/W;
so that equations (3.64) take the form
L=c, V., Wsin (a+ a,) ;
(3.67) { D=[c.+ c;sin* (ata))] Vi W;

T = C.IW/V’.

The constants ¢, (i = 1, 2,8, 4) may be deter-
mined from the fundamental performance equa-
tion

)
{3.68) ——=—msi —,
A Ap V.

where

p = ps/po = relative air density;

V= {7 V, = indicated airspeed;

P N

w
Ay = y
660 9P
2w
Ap = H
* Peo AS
2w 2w
Ay = —= H
P. BS y h'b' B o e A e
80 that
ei=1/A;
¢y = p/As;
(3.69)
cs = ¢, A/p.

The description of the aircraft should supply
the geometry of the airplane, its gross weight
(W), the propeller efficiency (3), maximum
engine brake power (P,..) and the correspond-
ing maximum level flight speed (V,...) for a
certain altitude or density ratio p’. With this
information, we compute

W 2w
;)\a=

5560 nP o,

(3.70)

)H win, —

’
po #b?
Vi mar. — VP, VI’ mar. °

The values obtained from (3.70) may now be

" inserted into equation (3.68) and this equation

solved for A, which depends only upon the
8l
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geometry of the airplane and is therefore not
affected by changes in p and V.. With A, and A,
determined, it is possible to consider A, for any
speed at any altitude. Thus, if we choose a V,

1
and p, we can solve for A, (or —) from equa-
A
tion (3.68). '
The computation of the aircraft constants
may be summarized into the following steps:

(1) Given: W, b, S, &, 9 Puess Vrvess
and p'.

(2) Compute: A,, Vi wary At mins As, 80d K.
(8) Choose: V,andp.

(4) Compute: V,, 1/a,, ¢, ¢, ¢, Cs; (use
equations (3.69)).

3.10 Dimensionless Form

In any numerical computation dealing with a
physical system it is convenient to express the
equations in dimenstonless form. This is usually

 samuanedibbomplished by dividing each variable by a

reference value of that variable. The system
expressed by equations (8.55), (3.57), (3.58),
and (8.59) may be reduced to a dimensionless
form by the following transformations. Let

(3.71) t* = gt/V’O; V= Vp/Vpo; Uy = VgV’D;
8=gr/Vy 2
Where e e st e 2

V,.¢= reference velocity (usually taken to

be initial value of V;)
and :

g = acceleration of gravity

involve the same distance units.
If we further let

(3-72) Kl — ClV’oz; Kg == c;Vpaz ;K; = C;,Vp-oz;

K‘ = C,/V"a N

the system of equations takes on the following .

form:

82

dv KJ
—— =8in y + ——co8 a — K,1?
dt* v

bt ngz Bil’l’ (G + ac) M

dy
v ——— = c08 y — K,¥? 8in (a + )
de*
+ X
—sine;
(3.78) " @
.dt_.z—vcos(y-o)-b-u.cow;
d : (v 8in (y — 6)
= — — [V 8in -—_
dt* 8 !
3.1 Excmphs

In order to illustrate the computation of an
aerodynamic lead pursuit course in a vertical
plane let us consider two lpeciﬂg examples:

R - R ST S AR < S 0 T

Example 1. We begin with the following
data; units in feet, pounds, seconds.

(1) Aircraft data:

W =14656 lbs.

b = 42.833333 ft.

S = 334 square feet.
A =556

@ = .033743 radians.
g = 32.174 ft/sec:.

n =.8

Vb mes. = 493 ft./sec.

P ... = 1550 H.P.

Vi mae. = 337.58668 £t./sec.
p = .4689.

Po =.002378

— TR o
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_{2) Attack data: KS -
. v, =600, - =9 506373 . -
Vs =300 ft./sec. e, =1011367 10"

V., =2500 ft./sec.

e =.579494 X 10°
6, =80°= 5236 radiane. ¢ =27.003672 X 10
| = 81
g K, =26.284175
_ Vi, =500 ft./sec.
K, =.1448786 -

o
I

The aircraft constants are computed from the
formulas of section 8.9. In their evaluation it K,
will be assumed that the change in p during the
attack may be neglected. The computation
ylelds

A =2188.408710

= 6.760918

It is to be noted here that e,=1/A;, which is com-
puted from equation (3.68), is & function of V,
which in turn is a function of V,. Thus, strictly,
¢, is not a constant as V, changes according to

At min. = 2.022428 X 10 equations (8.73). The variation of ¢,, or more

_ " precisely K,, may be computed by tabulating or
1/Ar =7.184248 X 10 graphing K, versus v for each initial condition.
K =4.807670 In the present example we have table 8.8.

Table 3.6
K./v $or Exomple |
v Kv v K./v v Ky ) Ky

1.00 158434 1.10 . 184025 1.2 .215051 1.30 .251085
1.01 .158138 1.11 . 187089 1.21 .219322 1.31 254771
1.02 . 160876 1.12 .100147 1.22 . 222726 1.32 .258488
1.03 .183650 1.13 . 193259 1.23 .226159 1.33 . 262237
1.04 .166459 1.14 . 186404 1.24 . 220025 1.34 .266016
1.05 .169301 1.18 . 199580 1.26 .233123 1.38 . 269826
1.08 172178 1.18 .202790 1.26 .236652 1.36 .273668
1.07 . 175089 1.17 . 206032 1.27 . 240213 1.37 .277539
1.08 .178034 1.18 . 200306 1.28 . 243806 1.38 .281442
1.09 .181013 1.19 .212613 1.29 247429 1.39 .285378

To determine the “natural” initial value of
the angle of attack, we first determine the
“petural” initial value of y and obtain « from
equation (3.62). Thus in the example we choose
yo = .56, yo = .48, and y, = .42 and solve the

088006 0~ 83-7

" eystem (8.78) for 0 < t* < .10. The values for

y are then plotted over this range of values for
t* and extrapolated back linearly to give the
natural initial value y, = .4850. See figure 54.
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numerical solution of (3.73) can then be  final values, obtained by this method, are tabu-
ned by the Runge-Kutta Method. The lated in table 8.7.

e : Table 3.7
Example |
¥ 8 v 8 a r Zy zy Ts
4850 | .58238 | 1. .772178 | .0137 | 6000 -5108 | 3000 0
4825 | 4808 | 1.044671 | .722450 | .0114 | 5613.6 | —4480 | 2841 465.0
4100 | .4563 | 1.086383 | .600354 | .0088 | 5201 -3736 | 2202 933.0

3870 | .4228 | 1.125138 | .613119 | .0088 | 4784.1 | -2047 | 1955 1398.0
.35868 | .3888 | 1.160013 | .583983 | .0048 | 4304.6 | -2117| 1632 1866
.3235 | .3544 | 1.193856 | .492140 | .0084 | 3824.1 | -1285 | 1327 2331
2007 | 3100 | 1.223207 | .427948 | .0024 | 3323.2 | - 361 | 1043 2708
.2000 | 2823 | 1.249721 | .261841 | .0017 | 2810 565 | 782.8 | 3264
2218 | 2488 | 1.273776 | .203454 | .0014 | 2280.2 1516 | 840.4 | 3720
1843 | .2023 | 1.202240 | .223703 | .0015 | 1738.2 P 349.2 | 4197
1481 | 1880 | 1.307788 | .183713 | .0025 | 1186.8 3400 | 184.2 | 4662
0044 | 0005 | 1.318674 | .082301 | .0085 | 628.2 4502

inate systom z,s was chosen such 2, = —r cos 0 + 25, The space courses were then
=0, 5s=0anda; = Vyt, 5, =ruaind, plotted and are shown in figure 55,

EXAMPLE 1

AERODYNAMIC LEAD PURSUIT COURSE
IN THE VERTICAL PLANE

"0 V= 300; V; = 500; Vg= 2500; r = 600C; 8 = 30; p = .81
DIMENSIONS - FT./SEC.

FIGHTER'S SPACE COURSE

%0

| 1 ) a1
"4000 <3000 -2000 -1000 &

BOMBER'S SPACE COURSE

Figure 55. — Aerodynamic Lead Pursuit Course Exomple
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V E;t_\ﬁnrtpleﬂ 2 (ﬁnits in feet, pounds, seconds, P = .49
radians.) '
8, = .8727 radians
(1) Aircraft data: V,o = 600 ft./sec.
W = 14,000 lbs, . (8) Computed constants: '
b =42 Ae = 2124.700882
s = 815 1/t min. = 60.814286 '
p o = 5.8 K = 4.829716
" = .88 1A =86.752215 X 10 '
a, = .08 - A KS
Ve = 800 ft./sec. & =60689674 X 10 '
o = 347 o = 3.808585 X 10-*
b = .002878 P = 15.970967 X 10 -+ l
Vi we, = 858.4402 K, = 21.848288
e =.000825106 K, =.119100 '
(2) Attack data: . K, = 5.749548
o = 4000 ft. The same calculations which were performed l
v = 860 £t./sec in Example 1 were carried out and are shown in
» = SRR tables 8.8 and 3.9. The values were plotted and
V. = 2600 ft./sec. are shown in figure 56 and figure 57. '
Table 3.8 '
K./v for Example 2 ] L ""”‘1
v Ki/v v K /v v K/v v K /v [
1.00 .131154 1.10 .154076 1.20 . 179882 1.30 . 208422
1.01 .133311 1.11 - 156530 1.21 .182614 1.31 .211422
1.02 . 135498 1.12 .159012 1.22 . 185374 1.32 .214448 '
1.03 .137716 1.13 .161523 1.23 .188162 1.33 .217502
1.04 .139964 1.14 .164062 1.24 . 190076 1.34 220580
1.05 .142243 1.15 .166630 1.25 .193817 1.35 | .223685
1.06 .144551 1.16 .169224 1.26 . 196684 1.36 .226816
1.07 .146888 1.17 171847 1.27 .199579 1.37 .220973 '
1.08 .149256 1.18 174497 1.2 . 202500 1.38 .233156
1.09 | .151651 1.19 177176 1.20 .205447 1.39 .236365
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EXAMPLE 2
AERODYNAMIC LEAD PURSUIT COURSE
IN THE VERTICAL PLANE '
Vg= 360; V= 600; Vg=2500; ry=4000; 0y = 50°; p=.49; B5(0,0)
CALCULATED FIGHTER & BOMBER POSITIONS

Table 3.9 .
Example 2 l
" ¥ (] v 8 a r z, 2, 2y
0 | .8100| .8727| L. 357480 | 0327 | 4000. | —2571.0| 30643 0 l
02 | (7880 | (8504 | 1.013790| 345182 | .0308 | 3862.3 | —2414.7| 2002.7| 133.2
0¢ | 7664 | 8278 | 1.027280 | 332827 | .0206 | 3724.1| -2249.3| 2742.6| 270.
06 | (7448 | .8049 | 1.040448 | 320406 | .0288 | 3585.1| —2081.9 | 2584.0| 403.2
08 | 7282 | .78168 | 1.053288 | 307923 | 0284 | 3445.4 | —1909.1| 2427.0| 5364 l
10 | ‘7004 | 7880 | 1.085785| 205383 0280 | 3305.1| —1730.6 | 2272.2| 660.8
‘12 | 6794 | .7339 | 1.077930 | 282701 | .0279 | 3184.2| —1543.2 | 2119.3| 806.4
14 | 6571 | 7004 | 1.089700| .270153 | 0270 | 3022.8| —-1354.0| 1969.0| 939.8
‘18 | 6345 | .esdd | 1101108 | 257474 | 0280 | 2880.9 | —1189.3 | 1821.3 | 1072.8 '
‘18 | 6115| .8s89 | 1.112118 | 244760 | .0282 | 2738.7 | - 085.8 | 1676.8 | 1200 6
'90 | 8883 | .8320| 1.122710| .232017 | .0285 | 2808.1 | — 780.5 | 1535.6 | 1342.8
'32 | .sedd | .6083 | 1.132003 | 210250 | 0288 | 2483.2 | - 530.0 | 1397.9 | 1476
‘84 | 8402 | 5701 | 1.142653 | 208485 | .0203 | 23102 | - 320.7 | 1284.3 | 18128 '
'98 | .B183| 5513 | 1.151983 | 103867 | .0208 | 2187.2| - ©0.0| 1135.1| 1748
‘98 | 4008 | 8227 | 1.160787 | 180862 | .0308 | 2023.7 125.7 | 1010.3 | 1870.2
‘80 | 4645 | 4033 | 1.160134 | .168087 | .0313 | 1880.4 356.2| 8904 | 2012 4
j '$2 | 4381 | 4630 | 1.176074 | 155287 | .0324 | 1787.2 3040 7I8.0| 21402 '
‘84 | 4108{ 4317 | 1.18428t | 142468 | .0334 | 1394.1 834.5( 667.0| 2282.4
‘86 | 2890 | 3094 | 1.101037 | 120606 | .0848 | 145:.9| - 1078.6 |- 864.3| 2415.6
'$8 | (8M0 ) 3658 | 1.197200 | 116946 | .0383 | 1308.5| 1330.5 | 468.0| 2852.4
‘40 | ‘so41| ‘3308 | 1.202764 | 104225 | .0382 | 1168.2| 1882.6| a78.8| 20886 .
42 | 2081 | ‘2040 1207675 | 091538 | .0408 | 1024.2| 1838.5| 206.8| 2818'8
‘4 | 9608 | ‘2851 | 1.211887 | 078800 | .0434 | 882 2101.5 | 222.7| 2085.6
a8 | ‘gas4 | ‘2138 | 1.218344 | 086288 | .0471| 741.7| 2384.0( 1572 | 30888
48 | ‘1sop| 1688 | 1.217086 | 083728 | 0517 | e01.2| 2620.3| 1009 3222,
% | (1508 | (1188 | 1.219648 | .041233 | .0584 | 461.4| 2%07.0| 54.6| 3385.3

2000 INDICATED BY DOTS
DIMENSIONS - FT./ SEC.
- 1000 =
-2000 -1000 0 1000 2000 3000
Figure 57. — Aerodynamic Lead Pursuvit Course Example !
8¢
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3.12 The Three-Dimensional Equations

The complete derivation of the equations in
the case of the three-dimensional aerodynamic
lead pursuit course is rather complicated and
will not be presented in this book. The form of
the equations, of course, depends upon the co-
ordinate system which is chosen. The most
convenient set of equativns is that which refers
to the rectilinear trajectory traversed in space
by the projectile from the fighter to the impact
point. Let us adopt the following notation:

R = projectile air range.

A = azimuth angle of the projectile’s rec-
tilinear trajectory.

E = elevation angle of the projectile’s rec-
tilinear trajectory measured from the
horizontal plane through the bamber’s
position.

Glidie SEVBN T8 T

L2

R I S T IR N N

a = angle of attack of the trsjectory.
o= angle between the direction of motion
of the fighter and the trajectory at the
time of departure.

B = the bank angle of the fighter about
the projeetile path.

= the angle from that perpendiecular to
the trajectory that lies in the vertical
plane to the perpendicular to the tra-
joctory that Lies in the fighter's plane
of symmetry. .

=gt ot it o i
bomber’s direction of moti

s = angleoff of the projcetﬂt from the
bomber’s direction of motion.

A typleal umuuniuhmhmas.

Vaser e TH

+

Figure 58. — A Three-dimensional Situation
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The targential equation is obtained by sum-
ming the forces along the direction of flight

W dv,
(8.74) ———— =W (cosatink

t
g <+ sin a cos E cos 8)
+TcOla;—D

where o, is the angle from the thrust axis to the
aircraft’'s direction of flight. This sngle, a,, is &
function of a apd any constant offset of the gun
bors axis from the thrust axis. There are two
equations obtained by taking components in
appropriate directions, normal to the direction
of flight, which express the rate of change of
the angles 4 and E. Thus,

w V' EdA da
)
'+mﬁw
dt)
——L+T!in¢1

-w (cosacou Ecoup—ainuinﬁ.‘)m__x;gim_thm & unique curve. It also has been

and
w dA
(8.76) ~ TVp[(lin E — cos acos EOOIP)E

dE dg
+ cosasin g 5 sina dt]
=WsinBcos K.

There exist also three kinematic equations.
The impact point is the point which is being
pursued. Since the distance from the bomber to
this impact point is V,t,, where ¢, is the pro-
jectile’s time of flight over R, it follows that
the velocity of the impact point is V, 4 Vi,
Thus, the range rate equation is given by

dR
B77) ——=—V,co8a
dt

— Vs (l+£,)cosAcosE.

The rate of change of azimuth and elevation
are obtained by making projections normal to
R. The equations are

90

dA 1
(3.78) = —
b odt Rcosd

[Vpﬂinaﬂinﬁ—V‘ (1-’-2,) SinA]

and

dE 1
(8.79) =— Vesinacos 8
dt R

— V(1 +¢) coaAalnE]

Equations (8.74) to (8.79) comprise a system
of non-linear differential equations which may
be solved 1or the variables V,, R, A, E, B, a.
Ballistic considerations must of course, furnish
t and ll

In this discussion it has been assumed that
the fighter pilot flies with no sideslip. If sideslip
is introduced, we have more unknowns than
equations and a family of solutions results

assumed that the projectile’s gravity drop may
be superimposed upon the problem, that the
bomber is flying straight and level at & constant
speed and that the fighter’s throttle setting is
left unchanged. Variation in these assumptions
must be introduced externally.

L
. .
E
[
|
B
-i¢ - e——— F
L cos B /
w

Figure 59. — Force System
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Figure 60. — Force System

3.13 Minimum Radius of Turn

The aerodynamic restrictions on an aircraft
may be such thgt the aircraft cannot fly a pur-
suit course. In'otder to determine a criterion for
this we may derive a formula for the minimum
radius of turn. Let us consider the horizontal

and vertical planes separately.

Let us consider the airplane to be a body of
weight W which is kept in motion in a horizontal
eivele by a force of L pounds whose vertical
component, L sin B, is equal and opposite to W
and whose horizontal component, L cos 8, is
equal and opposite to the centrifugal force, F,
exerted by this motion; where 8, is the inclina-
tion of F to the horizontal. See figure 89. The
airplane is then turning in a horizontal plane
without any loss in altitude. Thus,

(LsinB)*+ (Lcos B,)*=W*4 F*
or,
(880) L*=W*4 F?

The centrifugal force may be expressed in terms
of the radius of curvature R by the following
formula:

AL
F=e—

(3.81)
gR

 Let us further define the load factor, v,* to be

(3.82) >
R ’—W

If we substitute the last two equations into
equation (8.80) we may solve for the radius
of turn

Ve
(388) R =
g yr—1
In the vertical plane, it is necessary to include

the angle of climb, y. From figure 60 we have,
by summing the forces parallel to the lift,

(884) L:=F+ Weosy+ Tsina.

If we neglect the angle of attack, «, the radius
is then given by

Vs
388) R=—mM M8
g (n—cosy)

For equations (3.83) and (3.85) it is clear
that the radius of turn capable by the aireraft
is a function of speed and the load factor, which
in turn is a furction of speed. The maximum
load factor (given in “gees”) is obtained from

*Do not confuse with propeller efiiciency.
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Figure 61. — Buffet Region

The following conclusions may be drawn:

(1) The load factor falls off rapidly as the
speed increases beyond the peak for
the maximum value of the load factor.

(2) As the speed increases, the minimum
radius of turn increases.

maximum lift and when plotted against an
increasing speed will define a buffet and stall
region in which the airplane cannot fly. A typi-
cal curve for modern aircraft is shown in

figure 61.

The minimum radius of turn occurs at the
maximum value of the load factor and a curve

corresponding to figure 61 may be plotted for
the minimum radius in either the vertical or
horizontal plane. Figure 62 pictures the situa-
tion in the horizontal plane.
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Consequently, at very high speeds it becomes
increasingly difficult to fly anything but a tail
pursuit; that is, a pursuit course initiated well
toward the stern of the pursued aircraft.
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Figure 62. — Minimum Radius of Turn

3.14 Coliision or Intercaption Courses

In order to avoid the high gees which arise
in some pursuit courses, other types of attack
must be adopted. We shall discuss one type
which may be employed by a fighter with fixed
guns. The principle of the attack is to fly in a
straight line toward a point well in advance of
the target. This point may be a collision point;
that is, the point where the attacker would
intercept the target. The course is, therefore,
called a collision or interception course. Actu-
ally the point of aim should not be the point of

collision between the two aircraft unless it is
desired to destroy both aircraft. The point
should be the collision point between the target
and the projectile that the attacker is firing.
This, of course, means that the attacker can fire
only one salvo and, consequently, the projectile
must be a large shell or a salvo of rockets.

The general problem may be visualized by
referring to figure 63. The bomber is the target
and flies a straight line path BH at constant
speed V,. The fighter is the attacker and flies
the straight line path FH at constant speed V,.
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Figure 63. — Collision Course ;é
Let S be the point of release of the salvo and A = correct angle r to insure a hit for a .7
let us define additional symbols as follows: predetermined projectile range R. .
R, = projectile range; distance from re- From figure 6S, it is easy to see that the fol.
leage point to impact point H. lowing relations hold: - r
t; =time of flight of projectile from § (3.86) dsin A= "V,tsine; =
-to H. (387) (Vat)*=d'+r* —2rdcosa; ” }
t = time of flight of bomber from B to H. (388) r=dcosA+ Vytcosé; ;‘; }
r = present range, BF. (3.83) d=V,(t—¢t) + Rs; -
d = distance from F to H. (8.90) -F=Vrcosr+ Vycosd; , .
r =angle-off of bomber from fighter; (831) ru=Vs3ind — V,sina.
le f | 4 . B
angle from Vr to r If the projectile range, R;, has been prede-
¢ =anglefrom V; tor. ~ termined, the type of ammunition determines t 1
94
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Figure 64. — Collision Course Example

and the problem is to get on the straight line
course FH for which equations (8.88) to (8.81)
hold. The fighter thua flies a variable course
which has r as the angle-oft of the bomber and
continues to vary his course until + = A, after
which he flies a atraight line FH, It is then a
mere matter of computing the release time for
the projectile.

The fighter’s inputs to his sighting system
arer, *, o, Vo, 7, Rp, and t;. The unknown quan-
tities are 6, t, Vg, and d. The correct angle A is
computed from the inputs by means of

To r
COB A — .
"‘ Rp - V’tl

Equation (3.92) is obtained by eliminating d,
t, Vs and ¢ from equations (3.86) to (3.91).

(8.92) sina=

The computed angle A is then continuously
compared with the measured angle + until they
are identical. The time ¢ is then computed by
means of

1
(8.98) t=— [(Rr— Vet;) cos a — 7]
r

and the release time is ¢ — ¢/,

Figure 64 shows a calculated example for
the conditions

Va= 200 yds./sec.
V,= 300 yds./sec.

r, = 5000 yds.
R,= 1000 yds.
t, =1 sec.

r =arcsin3/b

The maneuvering path of the fighter is a ci
radius 3,000 yds. witg center at (03’4000). circle of
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Chapter 4

THEORY OF LEAD COMPUTING SIGHTS

4.1 Introduction

Reference to chapter 2, equations (2.9) and
(2.16) in particular, indicates two distinct
methods of calculating leads. One method, as
exemplified by equation (2.9), expreases total
lead in terms of: (1) bomber speed (V,);
(2) target speed (V,); (8) angle-off of the
target (r); (4) approach angle of the target
(«); (8) muzsle velocity (V,); and, (6) the
bullet slow-down factor (g),. Essentially, this
method, as has already been pointed out, breaks
up the total lead into a correction for ownspeed
and a correction for target motion. A sight
which computes leads in this manner is spoken
of as & vector-rate t. “Equation (2.15), on

the other es total lead by decom-
posing it into a lead arising from the relative
.alrcrafia, the so-called kinemafic

_sgiation af the
lead, and a ballistic lead. The purpose of this
chapter is to consider the theory — not the
cs — underlying devices which work on
the basis of this second method. Hence, through-
out this chapter, by a lead meut%gi!ght we
shall mean one which compu tic lead
from the angular velocity with which the gunner
tracks the target and from the range which the

gunner determines, and then comhines the re-
sult with an appropriate ballistic deflection.

4.2 Essential Elements of a Fire Control
System

Since a lead computing sight is but one type
of fire control mechanism, it would be well to
list the essential features of a fire control sys-
tem. In general, a fire control system provides:

(1) A line of sight by means of a radar
antenna or a telescope or other optical
gear, mounted so that it caz move as
the target is tracked;

(2) A computing unit which determines
the lead to be used;

(3) A gun;

(4) A system of control which keeps ¢
appropriate angular distance betwe
gun and line of sight.

A fire control system is classified as local
remote according to whether the means of cq
trolling the gun is actually located at the gun
is physically separated from it. In the remq
case, suitable electrical or mechanical int
connections must be provided to link the locat
of the sighting system, the gun, and the co
puting unit; any or all of which may be
separate locations, depending on each spec
installation.

4.3 Disturbed and Director Systems

Fire control systems may be further ¢
fled according to the controls by which
gunner constrains the line of sight to track
target. This classification amounts essen
to describing sights as belonging either to
tor systems or disturbed systems. In a
immediate e gontrol |

system, the gunner has

the angular position of the lipz “of sight
directly positioning the appropriate optical
The information gained from this positio:
then goes, via electrical or - mechanical means
the computer which uses it to determine
proper lead and transmits this lead to the
trol system which in turn positions the gun.
modern fire control systems employing se
mechanisms (automatic control devices),
director system is often of the remote con
type wherein the gunner is replaced by a
tracking mechanism which positions: the lin
sight automatically. The chain of events o
lined here is indicated by figure 66 which ch|
acterizes a director system.

GUNNER —— LINE OF SIGHT

1 Vaa
COMPUTING UNIT

Figure 66. — Director System
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In a Qisturbed system, the gunner, either
manually or with the aid of a power mechanism,
exercises immediate contro! over the position
of the gun. Information giving the instantane-
ous angular position and angular rate of the
gun is then fed into the computer which uses
it to compute the proper lead. This computer
output then actuates a control mechanism which
drives the line of sight into tracking position
to effect the required lead angle. The corre-
sponding diagram for this is shown in figure 87.

GUNNER—— GUN
LINE OF SIGHT

COMPUTING UNIT
FHgure 87, — Disturbed Sysiem

The important thing to notice here is that the
gunner has only an indireet control over the line
of sight. Tha name “disturbed sight” arises
from the fact that a given motion of the gun
will in general produce a different motion of
the line of sight, a situation that is often con-
fusing to the gunner.

For illustrative purposes we shall consider a
particular version of a disturbed sight known
as a disturbed reticle sight. This sight, the basic
physics of w taken up in the next
chapter, provides a line of sight by means of an
flluminated reticle which is reflected, by a mov-
able mirror system within the sight head, onto
& viewing glass fixed on the gun. The gunner
moves the gun 80 as to keep the reticle image
centered on the target and in so doing auto-
matically displaces the line of sight from the
direction of the gun bore by the proper lead. The
range to the target, a continuously varying
quantity, is obtained by varying the diameter of
the reticle image to agree with the wing span
of the target, which in effect makes range a
function of reticle image diameter. Range com-
puted in this fashion is referred to as stadia-
metric ranging.

Whereas sights based on the director prin-
ciple make the problem of tracking easier for
the gunner, disturbed sights are, on the other
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hand, smaller, lighter, and simpler mechanically.
This last follows from the fact that a low-
powered mechanism can poeition an optical line
of sight with respect to a gun, while a much
higher power level is needed for positioning the
gun with respect to the line of sight.

In this chapter, we shall be concerned pri-
marily with lead computing sights which are
disturbed reticle; local contro) systems although
mary of the concepts involved in the analysis,
such as operational stability, transient behavior,
amouthing of rates, etc., are applicable to more
general situations. :

4.4 Types of Tracking Controls and Thelr
Peculiarities

To control the angular position of a teleacope
(or gun or turret) the gunner turns a
wheel (or a “pistolgrip”). 1f we denote
anguiar coordinate of the telescope by ¢
the angle through which the handwheel
been turned by s, then we may classify
tracking controls by the manner in which
control mechaniam relates the variables ¢
». This classification ylelds essentially
types of tracking controls:

(a) Direct Tracking. Here the angle
through wﬁii% %Ee telescope moves is
directly proportional to the angle

through which the handwheel has
been turned. The correaponding rela-

b

Ry

g
.-

EEEFREL

.

]

BRI
“ E

tion between f and n is 6 = Ay, (A=  —
const.).
(b) Velocity Tracking. The velocity with -2

which the telescope is moving at any -5
time is proportional to the angle
through which the handwheel has
been moved. In symbols, /=By,
(B =const.). Tracking of this type
can be effected by having the telescope
driven by a variable speed motor, the
speed of the latter being regulated by
positioning the handwheel. Velocity
tracking enables the gunner to slew
the telescope quickly through a large
angle onto a new target merely by
giving the handwheel a larger dis-
placement.
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(c) Aided Tracking. This combines (a)
end (b) in that any displacement of
the handwheel not only positions the
telescope but also givea it a velocity.
The equation of coniroi may be writ-
ten as

(41) 6=An+Bn.
From (a) and (b) it follows that for

unit displacement of the handwheel,

equation (4.1) effects a displacement
of § by A units and also changes its
velocity by B units.

The ratio A/B, measured in units of time, is
the ratio of direct to velocity control. By vary-
ing this ratio, the velocity control can be made
more or less important relative to the direct
control of the telescope.

Investigation has shown that aided tracking
gives, in general, more satisfactory results than
either direct or velocity tracking. Why this
should be so may be seen from the following

-

Ao==(]1) A gunner can track a target whose
' “angular velocity is constant merely by
keeping his handwheel fixed, while
with direct tracking the handwheel
must be moved continually.

(2) For slowly changing target velocity,
the gunner can correct for any angular
distance he has fallen behind by put-

ting in an additional.displacement of -

the handwheel. This has the effect of
simultaneously changing the position
of the telescope and increasing its
angular rate. By the time he has
fallen behind again, all that is needed
is another slight increment in the posi-
tion of the handwheel.

(8) Aided tracking helps the gunner to
continue tracking through a region in
which the target is temporarily not
visible.

(4) Experience shows that aided tracking
is, in general, more “stable” than
velocity tracking in that there is less
tendency for the gunner to “hunt”
with the controls.

200008 0-82-8

4.5 Smoocthing of Input Data

In order to predict the future position of &
target, the computing unit of a sight must have
as inputs coordinates of the target's present
position, say the present range r and the present
angle-off r. In addition the present target rates,
r and r also must be known in order to have
information concerning past target behavior.
The quantities r, r and r, r are obtained by the
gunner’s tracking and ranging of the target.
The values of r obtained by stadiametric rang-
ing are generally poor and jumpy so that no
usuable values of » can be obtained in this
manner. Present day radar tracking is much
more reliable.

The process of tracking furnishes the sight
with continuous values of the telescope’'s angle-
oft, given say, by the function o(t). 1f the
tracking is perfect, then at all times ¢ we have
o(t) = +(t). Needless to say, trackihg is never
perfect and is always attended by an irregu-
larly oscillating tracking error, ¢ —+. Thus, if
o(t) is mechanically or electrically differen-
tiated to give o (t), the resulting rate will differ
from the desired target rate by the derivative
of ¢ -r. Since this may be a marked difference,
it is advisable, before using the raw data «(¢),
to subject it to a suitable smoothing or averag-
ing process.

We shall show that the solution z = z(t) of
the first order linear differential equation

(42) kz4z=f(t), (z=2,t=1)

where k is a positive constant, is, in a certain
sense, an averaged value of the input function
f(t). A computing unit whose input is f(¢) and
which operates mechanically or electrically to
produce an output z(t) according to (4.2), auto-
matically yields, then, smoothed values of the
input. The equation (4.2) may be achieved in
practice by a simple resistance-capacity or a
resistance-inductance network with circuit time-
constant equal to k.

Solving (4.2) by the appropriate formal pro-
cedure®, we find

*See “Elementary Differential Equations” by L. M.
Kells, (McGraw-Hill), pp. 49-50.
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(4.8) 2z =2z,

1
+——-[ e f(t)dt.
t/h

If we think of the term e'* as a weight function,
then the weighted average of f(t) is

t

1
(4.4) [ e' f(t)dt = f(t)
k ( et — e'./l) :, '

all of which suggests that we rewrite (4.3) in
the equivalent form

_ t—t.)
k
-— ,':")
+ 1—e } / ec/kf(t)dt
k — et ’
CEO

(48) z—=r=z,e

100

or what amounts to the same thing,
1=t
L

48) z=F(t) +e [z. — f(t)].

The second term in the right member of (4.6)
usually diminishes rapidly with increasing time
and for this reason is spoken of as a transient.
The time interval required for this transient to

1
diminish to - times its initial value is called

the time constant of the circuit and is evidently
equal to k. From (4.6) we see that, for a time
interval t — ¢, which is large compared to k,
the solution z (t) is approximately the weighted
average f(t) of the input f (£). 1t is in this sense
" that the output z(¢) is a “smoothed” value of
the input f(t).

The time ¢ being the present, (4.4) shows
that f(2) is an averaged value obtained by aver-
aging f(t) over past values beginning with
f(t,). The graph of the weight function e¢'’* has
the form shown in figure 68. As k is varied,
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them_ﬁs obtained a family of curves all passing
throgigh the point B (O, 1). Passing from left to
right along these curves we see that for amall k
the ¢urves rise more steeply through B than for
large k, the measure of this steepness at B being
in fact 1/k. Hence, if we wish to weight recent
values of f({¢) more heavily than earlier values,
it suffices to choose a weighting curve that rises
rapidly; this means choosing a small value for
the time constant k. But if it is desired to make
f(t) depend appreciably on early values of f(¢t),
k should be chosen larger. In general, we see
then that the smoothing effect varies inversely
as the time constant k.

The effect of a smoothing operation is to make
the output value z(¢) equal to the input value
at some past time, thus, in effect delaying the
input. This may be shown analytically as fol-
lows. 1f z is eliminated between (4.2) and the
equation obtained by differentiasting (4.2),
namely,

ki 4 z = }(t),
there is obtained
WD z=1(t) — kf(t) + k'Z.

1t z is changing slowly, z will be negligibly
small; hence if, in addition, we choose k quite
small, the k’z may be dropped. There is then
obtained the approximate solution for z(t) in

the form .. N e

(48) z=f(t) —kf(),

which is often sufficiently accurate to be useful
in the typical applications of this equation to
lead computing sights. The terms in the right
member of (4.8) are the leading terms in the
Taylor expansion of f(¢ — k) about the point ¢.
Thus the output z(¢) of the smoothing process
is approximately

49) z() =f(t—¥),

a form which shows that the output behaves
roughly like the input delayed by %k seconds.
From (4.8) we have

(4.10) f(t) — 2(t) =kf(t),

which interpreted, says that the difference be-
tween input and output is, to a first approxima-
tion. proportional both to the time constant &
and the rate of change of input. These con-
clusions which we have underlined are, as was
stated subsequent to equation (4.7), valid only
if k is small and z is changing slowly.

It is worth noticing that if we regard the
input f(t) as the sum of two terms, f,(t) and
f._,(t). the first a “signal”, the second an “error”

“noise” term, then the solution of (4.2) can
be regarded, by the Principle of Superposition,
as the sum of the solutions z,(t) and 2,(t), cor-
responding to f,(t) and f,(¢), respectively, as
inputs. In other words then, the output z(t) =
z,(t) 4+ z,(t) will consist of “delayed signal”
and “‘smoothed noise.”

In conclusion, we summarize the role of the
time constant k by noting that an increase in
the value of this constant will

(a) Increase the time required for the
transient term to die down by a apeci-
fied percentage of its initial value;

(b) Increase the smoothing effect on input

error, i.e., the averaging process will

extend over an effectively longer in-
terval;

Increase the amoﬁnt b& which the
signal or input will be out of date.

(c) |

4.6 A Generic Lead Formula for the
Coplanar Case

Equation (2.24) of chapter 2 gives an ap-
proximate formula for A,, the kinematic lead,
for the coplanar case of rectilinear gun and
curvilinear target motion. This equation may be
rewritten in the form

hM
TV[

(4.11) sinAr=
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Figure 69. — The Kinematic Lecd

where, it may be recalled,

'
V)= — = average projectile velocity
t over the future range,

“’«‘——,‘VA‘,v G

and

: ¢ y
(412) A=14+ ;(i) .
2 M

Replacing M by r*+ and r by V¢, where V, is the
average projectile velocity over the present
range and ¢ is the present time of flight of the
projectile over the present range, we find

si h(v, ¢
nAy = —n .
V.) '

If perfect tracking is not assumed, the angular
rate actually used in the latter equation will be
o and not r. Since the true lead is measured in
radians and is a relatively small angle, sin A,
will be approximately equal to A;. Thus,

. V. .
(418) Ar=h (.__) te.
v,
The average shell velocity Vr does not, for
moderate ranges, change very rapidly. Hence,
the fracticn V,/V, does not deviate appreciably
from 1.

The quantity k, given by (4.12), is worth
further study. From equation (2.24) et seq., we
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note that, for straight line target motion,
M =0and hmm1. Also, if the target path relative

to the gun is a circle traversed with constant .
speed, it is easily seen that

M=0 A=1and
V./V, =1. In these cases, then, it may be said
that the kinematic lead A, is equal to the

travel lead” 1 ¢. For the target trav-
a pursuit course, numerical computs-
tions, supported by the theory of such curves as
developed in chapter 8, show that A =0.9. All
these facts suggest our writing the kinematic
jead formula as

(414) M=uo

where 4 is a quantity to be calibrated to fit
certain classes of target paths. It has the dimen-
sions of time and represents, in a sense, an
averaged ideal time of flight. We shall refer to
% henceforth as the “time of flight multiplier”

or the sight “‘sensitivity”’.

4.7 The Basic Differential Equation of a
Typical Gyro Sight

We shall now examine the tracking problem
for & specific type of lead computing sight in
which the kinematic lead is computed from
(4.14) by solving a certain differential equation.
Although other mechanizations are possible, a
usual procedure is to employ a gyroscope to
measure the target’s angular velocity.

Referring to t}gure 69, if we ignore for the
present the ballistic lead A,, then GT, and GT,

) .
] [ . b,

1]
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give the telescope direction and the direction of
the gun-bore axis, respectively. It should be
noted that GT, is along r,. Letting the reference
angles of the gun and telescope be y and o, we
have then,

(418) Av=y—0

and |

(418) A=y —o.

From (4.14) and (4.18), A, = u(y — A4), so that

417) vhi+M=uy.

This could well be the differential equation we
are seeking except for the fact that tracking
would be difficult with such a sight. Why: this
is so, may be seen as follows. From (4.14) and
(4.15) we have as the equation connecting sight
line and gun line,

Yy—¢c

u

We notice here that o is independent of y, the
gun's rate of turn, and is a function of the
magnitude of the angle between gun and tele-

scope. This means, for example, that if the gun
and telescope are originally aligned and the gun
is given a sudden jerk away, the telescope, being
independent of gun velocity, does not respond
at once but begins o move only after the dif-
ference y — o has made itself felt. This situa-
tion, known as neutral tracking, is characterized
by a sluggishness in the telescope’s rate of turn.

The situation can be remedied by modifying
our basic equation (4.17). As things now stand,
the gyro spin axis is along the telescope direc-
tion. Let us instead envision the situation de-
picted in figure 70, in which the gun, teleacope,
and gyro axes move in such fashion that the
ratio of angles, gun line to telescope line and
telescope line to gyro axis is constant.

If angles are measured positively in the clock-
wise sense, this implies that

e—n —alh
(4.19) =
y—o Ax

=—a

where a is called the coupling constant or sight
parameter. The ratio in (4.19) is kept constant
in the sight by means of an optical or mechani-
cal linkage. How this is actually done in a typical
disturbed reticle sight will be clarified in the
next chapter.
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From (4.19) we also find

—-a g—1y
(4.20) = ’
l—a Y—1

from which we see that, for a typical a-value,
say — .5, the telescope line will be, at all times,
one-third of the way from the gyro axis to the
gun-bore axis.

One immediately obvious advantage of the
linkage arrangement is that, when the gun is
moved, the telescope will respond at once with
at least a fraction of the motion, even though
the gyro momentarily remains still. Thus,
coupling the three axes removes the undesirable
feature of neutral tracking mentioned earlier.
Other advantages will appear in the discussions
to follow.

Returning now to figure 70, we see, by way
of the linkage arrangement, that A, will be &
function of the rate of turn of the gyro axis. In
fact, equation (4.14) will be replaced by

(421) Mm=uq

or, since 9 =0 + a Ay, by

(“22) Ak =W‘-‘v'%"??' I e et

From this it appears that we have introduced an
appreciable error in substituting « 4- a A, for o,
but it will be shown later that for properly

chosen values of a the error is a rapidly di-

minishing transient.

4.8 Solving the Basic Equation—
Interpretation

Let us rewrite (4.22) in the form
(4.28) -au Ax +Aam=u o.

This equation is a particular instance of (4.2)
if we regard —au as constant or, for our pur-
poses, as being relatively constant. The quantity
u depends essentially upon the range so that
the assumption of the relative constancy of u
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implies that the range does not vary greatly
during the projectile’s time in flight. Using the
solution to (4.2) we find, with the initial condi-
tion t = ¢, Ax= Ax (L.},

- (r—s)

At) =e

(4.24)

where ug is the weighted average of uo given by

—_ 1
(4.25) e = .
— w)—an fgy—8n
o (P
¢
e yodt,
k — G“ .

‘In the light of our previous discussion in 4.5,

_on amoothing data, we see that (4.24) furnishes
‘a smoothed output u o of the input function « o,
the exponential term being a transient for nega-
tive values of the sight parametera. The rapidity
of decay of this transient depends on the vari-

“able “time constant” -au, which, as mentioned

before, is essentially a funetion of range. For
short range, the target angular velocity o and
hence the input function uo changes rapidly.
But from (4.10),

(4.26) u.;—;';_'—_.-au-_t_ (uo).

In words, this says that lag in lead due to
smoothing is proportional not only to the rate
of change of u o but also to —ax. It is interesting
to note that, depending on the target range,
each of these factors helps in turn to keep the
smoothed lead lag small. Thus for short ranges,

d .
larger values of a (u o) are compensated for

by small values of -au, while for longer ranges,
u# o changes less rapidly, thereby making up for

[A(t) —ue] +ue

L —

r -t

— = (T
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lsxger values of —aw. In addition, since the gight
parameier i3 yet at our disposa!, we note that
for a numerically small value of a, the smooth-
ing effect on input error will be less. In fact,
we have already seen that the output behaves
roughly like the input delayed by k=-au
seconds. The smaller k is, the more the output
behaves like the input and the less, then, is the
smoothing effect.

4.9 Transient Behavior

Upon locating a target in the sky, the gunner
will probably find the gun peinting in some
quite different direction, thereby necessitating
his slewing the gun rapidly into the approximate
target direction. So far as the sight is con-
cerned, rapid slewing of the gun is interpreted
in terms of very fast target motion, whereupon
the computing unit puts out a correspondingly
large lead. In fact, for 8o large a gun rate, the
retigle may move far from the gun-bore axis
and might even disappear from the gunner’s
fleld of view. When the gun has arrived In just
about the right position, the reticle leisurely
oomes drifting back into the center of the fleld.
1t is of interest, therefore, to see what can be
done to hasten the decay of the large transient
lead set up. For this purpose we rewrite (4.22),
recalling that 2 =y — A,, in the form

e

(42) (1—6) uhs+ d=1u

This equation shows how the computed kine-
matic lead depends on given motions of the gun.
The equation corresponding to (4.24) is

(428) Al(2) =
— (t—t)/(1—e
e ——
+ “1; ’
the transient lead being the first term on the
right.
In section 4.10, we shall show that for “opera-
tional stability” of a sight a negative a-value

is necessary. With this in mind we see from
(4.28) that for more rapid decay of the tran-

» (At —uy)

..slent term a SMALL negative a-value is de-

sirable. To employ this fact, some experimental
sights have been constructed using two different
a-values. The numerically smaller of these
values is applied during the initial interval of
tracking and transient decay, the numerically
larger being switched on later.

As far as operation of the sight is concerned,
we note the following:

(1) The transient term diminishes more
rapidly when the range setting, and
hence the sensitivity, is small.

(2) In order that the false lead introduced
by slewing be as small as possaible, the
gunner should use minimum range
setting (semsitivity) while slewing.
Thus, the range should be sot at a
value appropriate to the target only
after the gun has gotten on target.

(8) When possible to do so, the gunner
should pick up the intended target
well before it gets in range so that the
transients can settle properly.

4.10 Operational Stability

We shall say that a sight is

stable if a amall but sudden displacement of the
gun in a'given direction gives rise to a sudden
displacement (not necessarily of the same size)
of the reticle in the same direction. If the reticle
is displaced opposite to that of the gun, we ghall
speak of the sight as being operationally un-
stable.

In conformance with the above definition,
we now show that unless a sight has a negative
a-value it will be operationally unstable. If in
(4.27) we replace A; by y — o, there results the
equation

(429) (1—a)uoto=-auy+y,

which relates the telescope and gun-bore axis
directions. One may easily show that, in carry-
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ing through the discussion, the.re is no loss in
generality in assuming the gun and telescope
directions initially aligned. Then v = y = O, and

o and y will rapresent the initial reticle and gun

velocities. Hence, we have initially

- \.
l—c)y'

which shows that the rate of reticle displace-
ment is proportional to the rate of gun dis-
placement and will be in the same or opposite
direction according to whether a is negative or
positive. (For.all cases ja| < 1).

Thus when O < a < 1, the reticle will move
in the direction opposite to that in which the
gun moves and, by our definition, we have
operational instability. This type of situation

(4.30) o =(

is very confusing to the gunner and leads to

poor tracking. The tendency in trying to get
on target would be to jerk the gun stfll farther
in the same direction, an act which would result
in sending the reticle farther in the opposite
direction. To continue this divergent process
for a few seconds may well put the gunner off
course entirely.

The case ¢ = O is that of neutral tracking,
discussed subsequent to equation (4.18). When
a < O, the reticle and gun will move in the same
~ directfon, the velocity of the former being a
proper fraction of the latter. In particular, if
a = -4, the reticle will follow the gun with 1/3
of the gun’s initial velocity. The particular
a-value to be used in a given sight iz a problem
in design that can generally be determined only
by trial and error. The different factors involved
are summarized in section 4.12.

4.11 Amplification of Gun Motion with
Respect to Sight Motion

As was pointed out in section 4.5, the process
of tracking is never perfect but is always at-
tended by an irregularly oscillating tracking
error or “noise”. Since the tracking is reflected
in the motion of the reticle with respect to the
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correct target position as origin, we might
inquire, since this is & disturbed-reticle system,
what must be the gun motion to produce a par-
ticular reticle motion? In particular, if the
gunner sees his line of sight oscillating with
amplitude Ao, with what amplitude is the gun
itself oscillating? If we denote the latter by
Ay and let C be the ratio 4¢/Ay, hereafter re-
ferred to as the amplification ratio, then C is
the factor by which the gun motion amplitude
is multiplied when it is transmitted to the line
of sight.

To initiate the study of the reaction of the
sight to oscillations of the gun, we ))ezin, quite
naturally, with equation (4.29), relating sight
position to gun position. Let us suppose that
the actual gun motion y(¢) consista of a steady
motion y,(¢) upon which is superimpqsed an
oscillatory motion y,(¢). Replacing y in (4.29)
by y. 4 v, we can write solution e(f).in the
torm [ 2 + @y With [/ (‘ = 0,1), wn‘ the ”‘u’

fon of (4.29) with y replaced by n §=0,1).

The function o0.(t) does not concern us here.

Hence, it is sufficient to aasume a “reasonable”

oscillatory motion of the gun, described by

11(t), and study the corresponding function

o,(t). Thus, let us assume the sinusoidal oscil-

lation e
yi=Ay sin ot

of amplitude Ay rediens and frequency I= %

oacillations per second. This assumption is not
unreasonable in view of the theoretical possi-
bility of decomposing more general oscillations
into sinusoidal ones, using a Fourier analysis.
Also in equation (4.29) we assume that u is
constant. We may do this since, relative to high
frequency oscillations of the gun, ¥ would
change slowly. Hence (4.29) becomes

(431) (1 —a) uo+ o=Ay sin ot
. —-G‘HUA)' €08 ot,

whose “steady-state” solution is

-_— klAY o
08 ol

c
(«*+ k%) (1—a)
k. Ay [k, — au o)

o 4+ k?

(432) o(t) =

8in ot

13 30

ke £

IR B

alsg

Cid




—J C3

C__.

THEORY CF LEAD COMPUTING SIGHTS

where k;, = ——rou-—
(1—a)u

The amplitude Ao is obtained from (4.32) by
taking the square root of the sum of the squares
of the coeflicients of the trigonometric functions
in the right member. After much simplification
we find that

14 4 #*(—a)® utfe
14421 —a)rutfr

(4.33) C=Ao/Ay= \I

In words, then, we may say:

Amplitude of Sight Oscillations = C (Ampli-
tude of Gun Oacillations). The oscillatory mo-
tion of the gun may be due to a variety of causes
such as gunner’s jitters in handling the controls,
recoil of the shot, etc. Since a is usually nega-
tive, the factor C < 1. As f varies from O to
4, C decreases monotonically from 1 and
approaches as a limit the quantity (-a/1—
a). In particular, if C is much smaller than 1,
the gunner will note only a amall oscillatory
motion of the sight, even when the gun has
large cacillations. Thus, the gunner may think
he is tracking well when in fact the gun is
wobbling badly. This also shows that for high
frequency gun oscillations, C tends to zero with
a. Hence, in order to make the amplification of
gun motion, with respect to sight motion less, a
should be chosen larger in magnitude, - '

In the above discussion, the gun and sight
motions are both of a sinusoidal nature. How-
ever, these motiona differ not only in amplitude
but also in phase. Thus, in reaching peaks, the
sight will lag the gun by . seconds, where : is
found from (4.82) to be

1 eru ]
tan"[ .
2«f 1-4r2a(l-a)fru?

4.12 Choice of the Sight Parameter o

(4.34)

£E =

We have seen throughout the preceding dis-
cussions in this chapter the significant part
played by the sight parameter a in the behavior
of the sight. In summary, we may say that the

a-value of a lead computing sight must be chosen
with due regard for the following somewhat
contradictory requirements:

(1) For operational stability we need, first
and foremost, a negative value of a.

(2) To make the amplification of gun mo-
tion with respect to sight motion less
requires an a-vaiue larger in magni-
tude. Specifically, this increase im-
proves the operational stability by
making the sight respond more em-
phatically to gun motion and hence
makes for ease in tracking.

For faster decay of transient leads, an
a-value must be negative and smaller
in magnitude.

(3)

(4) Smoothing of input data is greater for
larger vailues of a.

The delay in lead output is greater for
larger values of a.

(6)

Thus, in designing a sight, the engineer or
phyaicist must resolve to the best advantage
these contradictory requirements. A compro-
mise value somewhere in the neighborhood of
a = -4 is often quite satisfactory. It should be
mentioned that a sight with a positive a-value
could be designed and used, but, not being
operationally stable, it would take considerable
practice on the part of the gunner to master its
peculiarities. Such a sight, as mentioned earlier,
would have initial reticle motion to the right
for initial gun motion to the left, after which
the reticle would again move left after a certain
lapse of time.

4.13 The Basic Differential Equation
Including Trail

The differential equation derived in section
4.7 and the associated diagram of figure 70
are inaccurate to the extent that the ballistic
lead or bullet trail has been omitted from the
considerations. Let us now see how the basic
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Figure 71, = Bollistic, Kinematic, ond Total Lead Angles

equation (4.28) should be modified to include
the effect of trail.

It was shown in chapter 2 that in firing
against & relative target course from a bomber,
the gun must be moved from a line pointing at
the impact point, forward; the reason being
that in relative motion the bullet curves to the
rear. Considering a coplanar attack only and
neglecting gravity drop, this bullet-trail angle,
which we shall denote by A,, will then lie, along
with the kinematic lead A, in the plane deter-
mined by the gun position and the relative
target path. The diagram appropriate to this
situation is shown in figure 71.

For the total lead A there is the relation,
evident from figure 71,

(4.35) A= A4 As.

As was done in section 4.7, we calibrate a sensi-
tivity function u such that

Ar=un,

(4.36)

it being assumed here that the trail offset 4, is
included in the angular deflection of the gyro
spin axis from the gun-bore axis. Since
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= A= Ar— A
n=o0+4+a e+ a(As )3‘?

we may write the basic equutibn (4.86) in ‘tiu

forms

(487 A=u(e+ai);

(488) —auA+A=%uo —A;
(439) -auAr+Ar=do—auls.

In general, only a fractional mil error will be
committed when A, is neglected. If this be done,
then equations (4.38) and (4.39) show that to
obtain the total lead A it is sufficient to find A,
from equation (4.28) and combine it with A, via
(4.85). This fact will be looked into with greater
detail in the next chapter when a particular
mechanization of (4.38) will be considered.

It should be pointed out, in conclusjon, that
from the viewpoint adopted in this chapter the
lead is obtained as a “steady state” solution of
a first order linear differential equation whereas
the formulas in chapter 2 are actual expressions
for the leads derived independently of any de-
fining differential equation. The basic mathe-
matical formulation for the lead is dependent
of course upon the specific manner of mech-
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anization of inputs in the computer. Here also
we made things simple by neglecting gravity
drop of the projectile and by assuming a single
rlane of action. When the air courses of gun and

system of coordinates was used and the total
lead was decomposed in that system. If in
figure 34 the gun was constrained to move in a
plane passing through i_ and this plane in turn

target ere not coplanar, it is best to break up g free to revolve about i, we would haye the
the fotal lead into components as was done in " gy oglled “roll-and-traverse” system of coor-

section 2.8 of chapter 2. The manner in which
these components are defined geometrically will
depend upon the mounting of gun and line of
sight. Thus, in section 2.8 an azimuth-elevation

dinates. The formulas expressing the lead com-
ponents in one system can always be changed
to the formulas appropriate to any other sys-
tem, by a suitable transformation of coordinates.
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GYROSCOPIC LEAD COMPUTING SIGHTS

5.1 Some Preliminary Ideas from Dynamics

To aid in understanding the gyroscope, its
properties, and its many functions in fire-con-
trol instruments, we need to review briefly some
fundamental ideas from dynamics and to under-
stand how they apply in explaining gyroscopic
behavior. We begin by considering the notion of
the moment of a force about a point.

In figure 78, let P be a particle of mass m,

- acted on by the force F, and moving with:-veloc-

ity £+ =V referred to the fixed point O. Then
the moment of the force F about O is defined
as®,

(8.1) M =rx P
The scalar value M,, also called the to gue, is

‘easily sesn to be

(58) M,=F,

‘gince

M,=rFsin (s-a)=rFeina=F,

Thus the magnitude of the moment is equal to
the product of the force magnitude and the per-
pendicular distance from O to the line of aetion
of the force.

The momentum of the particle P is defined
as the vector quantity mV. The moment of
momentum or angular momentum of P is then

r X mV =H. Since

fl:VXmV+rxma=er

where a is the acceleration of the particle and
F = ma, we see that the time rate -of change
of the angular momentum about the fixed point
O is equal to the moment of the force about O.
In the case of a system of particles P, of masses

*See the Appendix for a review of vector definitions
and operations.

m; acted upon by a set of external forces F, the
time rgte of change of angular momentum of
the system becomes equal to the sum of the
moments of the external forces F, about 0. We
shall refer to this as the Theorem of Angular
Momentum. It should be noted that the internal
forces, that is those forces consisting of the
mutual actions between particles of the system,
do not enter into the statement of this theorem.
This follows, since these forces occur in pairs,
each pair representing the interaction of two
particles of the system. The two forces of each
pair, since they represent action and reaction,
respectively, are equal in magnitude and oppo-
site in direction and possess the same line of
action. Hence, the vector sum of the forces in
each pair is zero. From this it follows easily that
the vector sum of all the internal forces, and of
their moments about the point O, is zero.

o -
P
Figure 73. — Moment of Force About & Point

The Theorem of Angular Momentum, as
stated here, assumed that the point O is fixed
in space. However, the theorem can be shown
to hold for the case where point O is in motion,
providing that one of.the following conditions
is satisfied:

(a) The center of mass of the system of
particles is at rest.

(b) The center of mass of the system of
particles is in motion but coincides with
the origin O.

Since application in this chapter is to be made
to cases in which O is a point in an airplane, we
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shall assume hereafter that the point O is taken
at the center of mass of the system ol particles.

For a continuous body and not a discrete
system of particles, the angular momentum H
is obtained by the usual process of subdividing,
summing and passing to the limit, and is ex-
pressed by

(5.8) H=[rdem

where the integration is taken throughout the

Pigure 74, =

Rototing Selid

of Revolution
Since present discussion is preliminary
to a sion of gyroscopic behavior, let us
_considet (5.8) for the case of a homogeneous

solid of revolution rotating about its axis of
symmetry with the fixed point O on this axis.

We assume first that the axis of symmetry is_

fixed in space. ,

Let the angular velocity of rotation be @ =
ok, where k is a unit vector on the axis of
rotation £ and let p, r and s be as shown in fig-
ure 74. Then since p + k = O, we have

rX Ve (zk+p) X {8 X (zk +p)]
=8 —z0p
and

H.=0[p”dm—0/pzdm .
112

S

" points of the body except O will be in motion.

But because of symmetry,

/pzdm:O

and hence

¢4 H=LGa

where

Ie= fp'dm

is the moment of inertia of the body about the
t-axis. From (5.4) we obtain

(55) H =1la

mre o = £} is the angular acceleration of the

On obvious generalization of the above situa-
tion is to consider the body of figure 74 as
having & motion consisting of a rotation about
a variable axis through O. Thus, in general, all

The angular velocity vector €3 can then b
decomposed into components along the axes
symmetry £ and along any two axes z, y per-
pendicular to sz and to each other. Thus,

(58) =M.+ A, +0,.

The moment of momentum of the body about O
ia then, by an immediate extension of (6.4),

(67 H=A® +B&,+CAa,

where A, B, C are the moments of inertia of
the body about the z, y, z axes, respectively.

5.2 Theory of the Gyroscope

We shall define a gyroscope as any rigid
body rotating around an axis through its center
of mass. This axis will be referred to as the
spin axis or gyro axis. The body is generally
considered to be heavy, symmetric, and to have
high angular speed about its spin axis. Two

| e | 1 A

| B {
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GYROSCOPIC LEAD COMPUTING SIGHTS

5.1 Some Preliminary Ideas from Dynamics

To aid in understanding the gyroscope, its
properties, and its many functions in fire-con-
trol instruments, we need to review briefly some
fundamental ideas from dynamics and to under-
stand how they apply in explaining gyroscopic
behavior. We begin by considering the notion of
the moment of a force about a point.

~In- filgure 18, let P be a particle of mass m,
acted on by the force I, and moving with veloc-
ity + =V referred to the fixed point O. Then
the moment of the force F about O is defined
u‘

(5.1) M, _rxl'

Thomlarvnlueu.,ohounedthe g ,u
casily seantcbs - -

(u) H.=",

4

[

M,=rF sin (r-a)=fflhl¢=ﬁ',

Thus the magnitude of the moment is equal to
the product of the force magnitude and the per-
pendieulay distance from O to the line of aetion
of the force.

The momentum of the particle P is defined
as the vector quantity mV. The moment of
momentum or angular momentum of P is then
r X mV = H. Since

fl:VXmV+r>(ma=er

where a is the acceleration of the particle and
F = ma, we see that the time rate of change
of the angular momentum about the fixed point
O is equal to the moment of the force about O.
In the case of a system of particles P; of masses

*See the Appendix for a review of vector definitions
and operations.

m, acted upon by a set of external forces F,, the
time rate of change of angular momentum of
the system becomes equal to the sum of the
moments of the external forces F, about O. We
shall refer to this as the Theorem of Angular
Momentum. It should be noted that the internal
forces, that is those forces comsisting of the
mutual actions between particles of the system,
do not enter into the statement of this theorem.

This follows, since these forces occur in pairs,
each pair representing the interaction of two
particles of the system. The two forces of each
pair, since they represent action and reaction,
respectively, are equal in magnitude and oppo-
site in direction and possess the same line of
action. Hence, the vector sum of the forces in
each pair is zero. From this it follows easily that
the vector sum of all the internal forces, and of
their moments about the point O, is zero.

Figure 78. — Moment of Force About ﬁm

The Theorem of Angular Momentum, as
stated here, assumed that the point O is fixed
in space. However, the theorem can be shown
to hold for the case where point O is in motion,
providing that one of.the following conditions
is satisfled:

(a) The center of mass of the system of
partieles is at rest.

(b) The center of mass of the system of
particles is in motion but coincides with
the origin O.

Since application in this chapter is to be made
to cases in which O is & point in an airplane, we
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separate mountings for a circular disk gyro are C
- shown in figures 75 and 76. Either mounting
permits the spin axis to be placed in any posi- GIMBAL 3
tion. In figure 75, however, the center of mass
“of the system is always directly above the
pedestal support. Rotation of gimbal 1 about
-AB moves the spin axis in elevation, while
rotation of gimbal 2 about CD moves it in
azimuth. This is known as Cardan suspension.
* Lat us analyze the situation shown in figure
78, where the spin axis is perpendicular to the
vertical y-axis. The weight of the gyro rotor is
W and its spin angular velocity is 63. R Is the
_reaction at the suport 0. 1f the rotor were not
* spinning, the torque T'= W1 would cause the
“gyro to fafl; but, with the rotor spinning rap-
idly, the spin axis OA begins to rotats about
_ the y-axis. We apeak of this metion as preces-
“sion, hiuming fio bearing friction at O, we
‘whall show that for precession in s%
plags “thE precessiomat velocity w’ is given
munltude by

B WA Mguee 78, — Circwiar Disk Gyeoliops -

PR o

—R——=—-2

Al

Figure 76. — Gyroscopic Precession
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wl

’
§ o= em———

(6.8)

where C is the moment of inertia of the disk
about the apin axis 2.

If the total angular velocity of the system
be denoted by w with components w,, @,, ®,, we
see immediately that, for the case of precession
in & horizontal plane,

(5.9) W, = O, “. — ﬂ', w,; = n »

and
(56.10) w=04w.

The angular momentum of the system is then,
using (8.7),

(8.11) H =B +CH.

Relative to the moving set of axes O —z 1,
the vector H_ i constant. Its angular velocity
with respect to space is w’. Hence,

(5.12). ﬂ..—.. w XH, - (see appendix)
=w XCR=Cw X 8.

By the Theorem of Angular Momentum, H_ is
equal to the sum of the moments of the forces
W and R about O. Since the moment of R about
O ia gero,

(513) A =0AXW

and hence,
(5.14) Cw’ xn_&xw =T.

Taking scalars in (5.14) we find the desired
relationship

(515) Cs/a=WI.

The torque vector T in (5.14) is directed here
along the positive z-axis. Since this is the same
direction as that of w’ X &3, we see that the
spin axis will always precess toward the torque

When the spin axis makes an angle other than
90° with the vertical, say a, it is only slightly
more difficult to show that the equation corre-
sponding to equation (5.14) is

114
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4

(5.16) [C + (C—B)%cosa] o X @ =

>
0AXW=T,.

Equations (5.14) and (5.16) remain valid when
W is replaced by a resultant force F other than
the weight. In practice, the spin axis is not of
negligible weight as compared with the weight
of the gyro rotor and the point O is then best
located at the center of mass of the system.
Indeed, as was stated in connection with the
Theorem on Angular Momentum, the point O
must be so located in order that the theorem
beapplicable to cases where the center of mass
is in motion as would be the case for & gyro
mounted In an airplane in fljght. From (8.16)
we also note that when the precessional speed
o’ is considerubly less than the spip speed 0 (in
symbols 3 > > &) the term con coB a
may be dropped and (5.14) is then obtnined as
an approximation to (5.18). :

To {llustrate (5.8) numerically, let us suppose
that for the system of figure 76
W=11b.,l=1ft..radiusofdisk=61n..
and 0 = 400 rps.
Then,
N
(400)2«.C

?

where

e AW AL I NSLN?
C=-1-E (radius)* = —(——) (—)
2 9 2 \322 2

1
T 2576

257.6  257.6 180
and «»’ in radians/sec. is or .
. 800 » 800 » T

= §.87° per second.

When the gyro is mounted as in figure 76 and
the disk is apun rapidly about the apin axis, no
precession will occur since the center of mass
of the system is at the point O and the torque
Wl is then zero. However, if an external torque
L be applied to the system, the gyro will behave
in precisely the same manner as that in fig-
ure 76.

It
!
J
i

/

!
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Figure 77. — Use of a Rote Gyro to Determine Lead

Thus, to sum up, we have the following two
l important facts of gyroscopic behavior:

g
(1) With no external torques present, the
gyro spin axis will maintain a constant 5

. direction in space regardless of the
motion of the system in which it is

mounted.

' (2) Under the influence of an external
.. Jorque, the spin velocity vector will
" always precess toward the torque vec-

tor. More precisely, the spin velocity ‘ ‘
l vector g8, the torque vector T, and the GUN BORE AXIS
precessional velocity vector o', will ol - e
always form a right-handed orthogonal ™ T T
l set. ' Figure 78. — Using Fixed Reference Line
i <
Asg - ec’%

REFERENCE LINE

:Figuro 79. — The Gyro Axis as a Computing Lline

20995 0- 63 -9
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5.3 Use of a Gyro to Produce Kinsmatic Lead

The preceding section will now serve as the
basis for explaining how a gyroscope is actually
used in a fire control system. Referring to figure
77, let us suppose that the gvroscope is mounted
on a gun so that its spin axis is parallel initially
to the bore axis of the gun, and so that the
universal joint mounting at O is the center of
mass of the gyro system and also is the point
about which the gun rotates. Then as the gun
is turned about O, the gyro axis will, according
to the first property of gyroscopic behavior
stated in 5.2, remain pointing in its original
direction in space. 1f we now consider the spin
axis to be directed along the line of sight to the
target, then as the target is tracked the gyro
must lag the gun by an angle equal to the
required lead. In other words, the gyro will have
to precess at the proper rate in the plane of

rotation of the gun. Suppose that, as viewed -

from A, the gyro is spinning counterclockwise,
Then to achieve precession in the direction re-
quired by the figure, a force F will have to be
applied, at a point such as A, directed outward
(perpendicular to the plane of the figure). The
precession rate w is related to the force F
according to equation (8.8), (with W replaced
by F and | = OA). Thus,

F=———¢a.

(6.17)

If a fixed reference line be chosen as in figure
78, so that

(618) w=osand A oy —o,

then (5.17) will be the equivalent of (4.14),
providing that we can make the force F always
proportional to the angle between the gun bore
and spin axes, i.e., F = K,A,, with the propor-
tionality factor K, varying inversely with the

time of flight multiplier «,
Ca
(5.19) K, =
lu

. Cn . .
The quantity —l- is a physical constant asso-

ciated with the gyroscope.
To realize the relationship F —=K,A;, one
might consider attaching a spring of variable

1é

stiffness from A to a point on the gun bore, in
which case Hooke’s Law would apply to give
the desired ratio of F to A,. However, this would
give a force F in the plane of the gun’s motion
whereas we require, for precession in the right
direction, a force perpendicuiar to this piane.
Even if this difficuity were not present we
would still have the disagreeable feature of
having a sight with zero a-value, which, as we
have seen in the preceding chapter, would make
tracking impossible. One scheme for overcom-
ing the first of these stumbling blocks is the
use of electrical eddy currents. This is taken up
in section 54. The theoretical remedy for the
second was taken up in chapter 4 and consisted
in keeping the line of sight at a fixed propor-
tionate distance between the gyro spin axis and
the gun-bore axis. With this in mind, we see
from figure 79 that X, of (5.19) should be chosen
8o that
1

ca
(620) K, = =t o0,
lu 1—a

This follows from the chain of equations

(521) A= uny

ca .
(522) F=K, (y—19) = I 7
(628) y—y= (1—a)as.

5.4 The Eddy-Current Constrained Gyro

In the particular method of constraining a
gyro to precess by use of eddy currents, the
gyro rotor is not a cylindrical disk as in figures
76, 78, but consists instead of a spin axle with
a flat circular mirror at one end and a spherical
aluminum dome or cap at the other end (figure
80). It is mounted on a type of universal joint
known as a Hooke’s joint and through a pulley
arrangement it is kept rotating about the axle
at about 3000 rpm by a constant speed motor.
This unit, together with accessories to be de-
scribed later, is mounted in a sight head, which

is rigidly attached to the gun mount. The gun |

rotates about the same fixed point O as does the
gyro system (figure 81).

Supoose now, to the apparatus of figure 81 ;

we add a pair of electromagnets, rigidly attached

]
]
|
|
I
U
|
|
[
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GYROSCOPIC LEAD COMPUTING SIGHTS

DOME !

SPIN AXLE

UNIVERSAL JOINT

MIRROR

Figure 80. ~— Gyro Dome, Axle, ond Mirror

to the sight head and aligned with the gun air gap between the magnet poles. With the
(figure 82). situation as shown in figure 82, the gyro would

The iron cores of the electromagnets are be physically unable to take up its undeflected
wound with coils of wire through which a position. To avoid this difficulty, eight poles
current { flows under a constant EMF of voltage  are used instead of two-— four above and four
E. The current { may be arie] through use of  below. The dome may then move freely through
a variable resistance R. As the gyro precesses, the narrow air gaps between them. The four
the spinning dome moves through the narrow magnets on each side of the dome together

GUN e

/ SIGHT HEAD \

»
T = DOME
O¢ - o)
_— e MIRROR —
UNDEFLECTED DEFLECTED

Figure 81. — Motion of Gun with Respect to Gyro Spin Axis
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Figure 82, — Precessing Forces Introduced Electromognetically

have the effect of single magnets, so that the
result is equivalent to figure 82. Hence, in the
ensuing discussion we shall speak of only two
poles, each being the equivalent of the four
poles actually used.

When current flows in the coils, a magnetic
field of strength proportional to this current is
set up between the two poles. Thus,

(624) H=uc¢,t.

The lines of magnetic force pass through a
circular area of the dome with center at A, Since
the dome is spinning, this area is being continu-
ously replaced by another. As a result of this
motion across the lines of magnetic force, elec-
tric “eddy currents” are induced in the part of
the dome between the poles. With the poles
wound as indicated in fligure 82 and with the
dome spinning clockwise as seen from 0 (down
into the paper at A) these currents will be
directed from A toward the periphery of the
dome in the plane of the paper. If the linear
velocity of the dome at A is v and if the eddy
current strength be denoted by 7., then it is
known from electromagnetic theory that

(6.26)

The eddy currents, in their turn, react with
the magnetic field to create a mechanical force
on the dome. This force is directed opposite to
the motion of the dome at 4 and hence ver-
tically upward as desired. The magnitude of
this force F is proportional to H and i,. Hence,

t.=c, Hv.

(628) F=c,HS,.
Combining (5.24) through (5.26) we find
(527 F=ctccsi*v.
From figure 82,
AN=U )

and since 8 is a small angle, we have, to a good
approximation,

v= ﬂv sa=18.
The force F may then be written
(528) F=(c’c,c,1210)8;
or, since

8=y —n=(1—a) A,
(529) F=K,(1—a) A
with )
(6.30) K,=c’c,cyi*ln.

We now have a force proportional to A, and in
the right direction. It will have the right magni-
tude if (5.30) is now identified with (5.20). This
becomes, if we replace i by E/R (Ohm’s Law),
and simplify,
(1—a)eccs (e, E- 1)
(6.31) R* = ‘U,
C

Hence, by varying R in accordance with (5.31),
condition (5.20) will be satisfied, i.e., K, will
then be inversely proportional to the time of
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VIEWING GLASS
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LINE OF SIGHT
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EVE

RETICLE

COLUIMATING LENS

GYRO
MIRROR  DOME

SIGHT HEAD

Figure 83. — Optical System of the Sight Mead

flight multiplier 4. It remains now to investi-
gate by what means the sight line can be made
to stay a fixed proportionate distance between
the gyro and the gun-bore axis.

8.5 An Optical Linkage

An optical method of achieving the fixed ratio
of angular separations of the gun-bore axis, line
of sight and spin axis as desired in figure 79
will now be considered. A vertical cross-section
of the sight head, with component parts of the
optical system labeled, is shown in figure 88,
with the gyro in undeflected position, In prae-
tice, the point O is taken so close to the gyro
mirror that rotations can be thought of as being
taken about a point in the plane of the mirror.

- Referring now to figure 83 we note the follow-
ing: the bulb sends a beam of light through a
central hole in the two reticle disks. This beam
hits the gyro mirror at O (when the gyro is
undeflected) and is reflected along OB to a fixed
mirror at B. From here it is reflected straight
up through a lens C {0 a piece of plate glass at

G. Part of the beam passes upward and is lost,
but part is reflected to the operator’s eye at K.
He sees the image of the round circle of light
at R as appearing on his line of vision ET. A
primary function of the lens C is to focus this
image at infinity, thus enabling the operator to
move his eye without occasioning any change in
the direction of line £T. When the gyro is unde-
flected, this image (or pip as it is called) will
determine with E a line of sight parallel to the
gun bore axis. The main function of the optical
system then is to see that the line EG lies con-
stantly between the gyro spin axis direction and
the gun bore axis, and at the desired angular
distance, for all deflections of the gyro.

Let the distance RO, which makes the con-
stant angle « with the gun bore axis, be denoted
by d and the point R so chosen that the optical
distance ROBC is equal to the focal length f of
the collimating lens C. A detailed analysis re-
veals the following facts. If the gyro axis ON
is deflected in elevation through an angle ¢ (this
means a rotation about O in the plane of the
paper) the line of sight ET is turned through
an angle A; given by

e

e




NAYORD REPORT 1493

MATHEMATICAL THEORY OF AIRBORNE FC

singcosy
(5.82) tanjp, =

—— —sin'y
2d

Since the angles involved will not exceed, say
15°, first order approximations give

- 2d
(6.38) An=—,—-v. (2d<n.

The angle ¢ corresponds in figure 79 to
y—9= (1—a) Ax,

which leads us to define the sight parameter, é,
as

!/
534 =1 -,
(8.34) a ™

An azimuth deflection of the gyro axis through
an angle 4 (a rotation about O in a plane
through ON perpendicular to the plane of the

paper), on the other hand, occasions an asi-
muth deflection of ET through an angle A,.,
where

7 sin 0 cos 8 cos a _
(5.35) tan A, = .

—— —sin*é cos* a
2d

This expression, were it not for the factor cos a,
would be identical in form with that of (8.82).
First order approximations give

[/ 2d
(688) A,=co8a (__ a)

f
which would correspond to a sight parameter of
!
(687) a=1-—
2d cos a

This dilemma of having two separate a-values
may be resolved in practice by taking a weighted
average of the two expressions in (56.34) and

120

(5.87). The interested reader will find upon
investigating that, for simuitancous azimuth
and elevation deflections 4, p of the gyro axis,

the corresponding line of sight deflections are
(56.38) tan A, =

8in 4 cos.y (cos aco8 6 cO8 ¢y 4 sin asin ¢)

f
—_— — (sin?
2d

9 + cos? a sint 4 cos’ y)

and
(5.89) tan Ay =

cos ¢ (cos 6 sin y — sin o cos o 8in? ¢ cos ¢)

-e:—d-—(lin‘o-l-wl’alin’ﬂéo#,)

e ikl

the first order npproximatiom being the same
as before. The errors made {n accepting the
approximations (5.88) and (5.36), known as
“optical dips”, are to second order terms only,

LAY~ T

24
(540) AA, = (-—,- sin a) by,

2d
AAg= (—’—ainaconx)d’.

Hence, we conclude that by proper choice of
f, d, a, an average sight parameter, a, may be

chosen. The theoretical implfcations and at- )

tendant advantages upon introducing a sight
parameter have already been discussed in tha
preceding chapter.

The function of the reticle disks is the de-'

termination of present range, r, to the target
and, mechanically, since the time of flight
multiplier » is dependent upon », they serve to
effect the relationship (5.31). One of these diska
is fixed, and is perforated with a central hole
(whose image at G on the viewing glass is the
pip) and six radial slits (figure 84). The second
disk, rotatable with respect to the first by
operating a pair of foot pedals or a throttle
hand grip, has a central hole and six spira) slits
(figure 86).
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Byure 84. — Relicle and Stadiameiric Ranging
Disk — Radial 8lits

The only light passing through the reticle
(and hence imaged on the viewing giass) will
be that through the hole and the six diamond-
shaped openings where the radial and spirsl
siits overlap. The resulting projection on the
viswing glass {s shown in figure 86. As the one
disk rotates, the six diamonds approach or
receds from the pip. Initially, the gunner pre-
sets the correct target span for the enemy plane

Va¥a

&— 0 —3

7\

Figure 85. — Reticle and Stadiametric Ranging
Disk — Spiral $Slits

¢

H
.

¢

flm 86. — Stadiametric Renging

by twisting the spiral disk to agree with the
known wingspan of his target, thereby giving
him a reference sise around which he can expand
and contract the ranging diamonds. Range is
then determined automatically as the unknown
part of a simple proportion arising from two
similar triangles. Thus, in figure 87, if & repre-
sents the operator's eye which is essentially
distant f units from the actual reticle, then if
MP is the known wingspan, the rangs r out to
the target is determined from the proportion

r MP
(5.41) 7=—H? where HK is the diameter
of the reticle diamond image.

M
H
E s
K
P
"_—"——’

Figure 87. — Geometry of Stadiumetric Ranging
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It should be noted that in this proportion the
distance f is actually independent of the distance
of the operstor’s eye from the viewing giass

—uzugines, a8 has been mentioned previously, the

reticle image has been focused at infinity.

Range, determined by the method above, is
said to be obtained stadiametrically.

5.6 Free, Constrained, and Captured Gyros
and Their Uses

A gyroscope mounted as in figure 75 and
subject to no external torques is said to be free.
The spin axis {s free to assume any direction
in space and, once set spinning, will maintain
that direction regardiess of any motion of the
system in which it is mounted. Besides serving
as the basis of the navigational gyro-compass,
free gyroscopes find ready application, in air-
craft fire control systems, as attitude indicators.
Thus in high level bombing, the free gyro with
its axis sst spinning in the vertical, is used by
the bombsight as a physical reference line from
which to msasure the dropping angle. The bomb-
sight also may employ a gyro with axis hori-
sontal in order to provide a direction from which
to measure the drift angle. The dive or glide
angle of an unbanked aircraft can be measured
with a free gyro, using the gimbal arrangement
of figure 75, as the angle between the spin axis
(set into the true vertical) and the plane of the
two outer gimbal rings, assuming the bearings
locked at C and D. A rearrangement of the
Cardan suspension can be employed similarly
to determine the angle of bank.

Theoretically, at least, a free gyro may be
used in a lead computing sight instead of a

precessing gyro, with the gyro, gun, and sight
lines coupled as in figure 79, providing that the
coupling parameter “a” be varied properly with
the time. Thus in figure 79 we have, upon dif-
ferentiating the coupling equation

y—e=a(y—o)
with respect to the time,

(542) y—~oc=aly—a) +aly—a).
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Now if the gyro is free, n = O and (5.42) may
be simpified to the form

(5.48) aAx +aAr=—o.

If now a be varied so as to yield values equal

to — l. where u is the time of flight multipler,
“® : ,

there is obtained the familiar lead computing
sight equation

—auM+A=to.

Perhaps the most popular application of gyro-
scopes in aircraft fire control instruments is
that of measuring the angular rate of a continu-
ously varying direction in space. The direction
may be a physieal line like the gun-bore axis,
telescope axis, or longitudinal axis of the air-
craft, or it may be an artificial “computing line”
related analytically to these by some sort of
linkage. Rate gyros currently in use are of two
main types:

(A) The constrained or “deflecting” type
wherein the torque due to the imposed
angular rate is opposed or constrained
by a spring-like force so that the de-
flection of the gyro is proportional to
the rate being measured and is used
as & measure thereof.

(B) The captured type of rate gyro where-
in the deflection of the gyro is opposed
by a torque which always keeps the
gyro from deflecting more than a
small amount and where the torque
required to thus “capture” the gyro
is used as a measure of the angular
rate.

-

An example of type A was taken up in section
6.4, wherein the spring-like 'force arose out of
the interaction of the eddy currents in the
dome with the magnetic field between the pole
faces.

= v T




Chapter &

BOMBING

6.1 Introduction

The methods of bombing from airplanes con-
sidered in this chapter may be listed as follows:

(A) Horizontal high-leve! bombing
(B) Horizonta) -jow-level bombing
(C) Dive bombing

(D) Toss bombing.

In level bombing, the aircraft flies, during
its bombing run, a ﬂbrizonul straight line. Low-
level bombing is restricted in general to alti-
{udes below %00 feet, a region in which the air
resistance operating on the bomb during its fall
is negligible by comparison with that obtaining
at much higher altitudes. High-level bombi
then refers to an altitude range extending from
5000 feet up to the celling of the aircraft.

The methods of dive and toss bombing are
most simply explained by referring to figures
88 and 89, In dive bombing, figure 88, the air-
cratt Is directsd a€ 8 polnt & beyond the target
T, so that when the bomb is at point R
it will not fall short due to gravity. Hence, at

releass, the sight line to the target and the line
of flight are at an angle to each other, In toss

D

Figure 88. — Dive Bombing

’
bombing, on the other hand, the aircraft dives
directly at the target along the “collision
course” DT, pulls out of the dive at point B and
releases the bomb at a suitable point R along
the pull-out curve BRE.

It will be the aim of this chapter to investi-
gate mathematically the determination of the
correct release points in terms of suitable input
variables for each of the four bombing methods.

A. HIGH.LEVEL BOMBING

6.2 Yacuum Trojectory

To initiate the study of the action of a bomb
in the air, we start from a situation with which
we are all familiar: the motion of a freely fall-
ing body in a vacuum. Referring to figure 90,
suppose that the homber traverses the line from
O to O’ with constant speed V knots during an
interval of ¢, seconds, releasing a bomb at O
which {s H feet above the target at T. Since
no air resistance ia nresumed to be acting, the
horizontal component of the bomb’s velocity
also will be V at all pointa of its trajectory, and
hence, during its fall the bomb will remain ver-

\\
: f’"“"‘”"’tmqé\
N

Figure 89. — Glide Bombing
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Figure 90. — Yacuum Trajeciory — Bomb

tically below the aircraft. The space path of the
bomb is the parabolic arc OBT while its path

relative to the bombardier is simply a vertical

straight line.

If at any instant ¢, the space coordinates of
the bomb B, are X and Z (see figure 90), then
the differential equations defining the bomb
trajectory are

(61) X=V, Z=g=2822ft/sec

Integrating (6.1) with thé initial conditions

t=0,X=2=0, Z=0, we find
(62) X=Vt Z=4pgt*.

The rectangular equation of the parabolic path
is then

9X?
2V:
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At time ¢t = ¢, if the point O is correctly placed,
the bomber is directly above the target at o
and a hit has been scored at T. The vacuiim
range R is then equal to V¢, and the range angle
g, which is the angle at the time of release
between the true vertical and the line of sight
to the target, is given by

( Vi,
(6.83) ¢ =tan" —) .
H

From (6.2),

g
H=—1tp,

2

so that (6.3) may be written free of ¢, as

! 2
(6.4) ¢=tan"( 14 -——) .
gH

7/
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To hit a target, then, when flying straight and
level at a predetermined altitude and speed, it is
only necessary, assuming air resistance on the
bomb during its fall to be negligible, to fly in
the invariant vertical plane containing the
target and to drop the bomb as soon as the
target appears at an angle ¢ from the vertical,
given by (6.4). For an aircraft flying at 10,000
feet above the target and at a speed of 360
knots, the time of fall ¢, would be 25 sec., the
range 14,625 feet, and the range angle  would
amount to 55°38’,

6.3 Air Trajectory Under No Wind

Let us now remove the vacuum restriction,
which is a poor first approximation at any but
the lowest altitudes, and see what the effects of
air resistance are upon the bomb. We shall

— e — s

assume in this section that there is no motion
of the air with respect to the ground, i.e., no
wind conditions prevailing.

Put qualitatively, air resistance has the fol-
lowing important effects:

(a) It decreases the vertical velocity of
the bomb at any instant, thereby in-
creasing the time of fall, ¢,.

(b) It diminishes the horizontal velocity
of the bomb at any instant, thus caus-
ing the bomb to trail behind the verti-
cal line from the bomber.

These effects vary with
(a) The shape, weight, and size of the

bomb,

(b) The altitude (and hence the air den-
sity)

(¢) The airspeed of the bomber.

VACUUM
——TRAJECTORY

A'

D

Figure 91. — Yacuum and Air Trojectories — Bomb
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Figure 91 illustrates the change of the poaition
of a bomb which is dropped in still air from
that of a bomb dropped in a vacuum, if the
bombs were observed at the same instant of
time. Thus, two bombs released at the same
instant at point O, the one falling in still air, the
other in a vacuum, will deacribe the trajectories
OB,T and OBR,D, respectively, in the same time
t;. When the “air bomb” ia at B,, the “vacuum
bomb” will be at B,; when the “air bomb”
strikes the target at T, the “vacuum bomb” will
be at D. The bomb falling in air will describe,
relative to the aircraft, the curved path O'T
while that falling in vacuo is describing the
straight line O’D. At time ¢, then, B, will lag
B, by B.E =r(t) horizontally and by EB, =
h(t) vertically, the functional notations being
used to indicate dependence on time. The quan-
tity »(t) is called the TRAIL and is denoted
at the target by the letier ». Thus,

).-ﬂ-- f(_g_n.ft e v e

It should be noted that the trail = is not equal
to TK. The quantity TK is known as the ground
lag. Actually, » = TK 4 KN, which says that
trail r is equal to the ground lag plus the dis-
tance that the aircraft travels during the time
lag. The time lag here is the fractional part of
t; which it takes the bomb on the vacuum tra-
jectory to traverse the arc KD.

In figure 981 there is indicated the set of forces
acting on the bomb B,: the weight of the bomb
W and the air resistance F, assumed tangent
to the trajectory and directed opposite to the
motion of the bomb. In the absence of yaw and
other secondary effects, these then will be the
only forces acting. The resistance function F
depends upon the weight of the bomb, its shape
and size, the air density p,, and the velocity v
of the bomb with respect to the air mass. As
explained in chapter 1 the first two of these are
incorporated into a single quantity C, called the
ballistic coefficient. The force F can then be
written

- St

(65) F=—— i
c

where f(v) is a function of velocity only. The
air density p,, in terms of the coordinate system
of figure 91, is

126

(6.8) e-KH-B

Ps = po
The quantity p, then represents the density at
the point of fall T. For the standard air struc-
ture considered here, see section 1.7, assuming
the target to be at sea level,

po = 07618 Ib./ft*, K = .0000316 ft.".

It will be noticed from (6.5) that F diminishes
as C increases and hen'ce, that the larger the
ballistic coefficient the more efficient will be the
bomb.

With ¢ defined as in figure 91, we find, upon
taking components of the forces F and W upon
the horizontal and vertical, that the equations
of motion for the bomb are,

6n m¥= —--%'-f(v) sin 0
.s Pe

(8.9) X=Ztanoe

(6.10) v=Xcscod =2 sech,

with the initial conditions

v=1"Y, Z= 0

(6.11)

wherein V is the true airspeed.of the bombing
plane. Equations (6.7) and (6.8) reduce to (6.1)
when C = «, that is, for a vacuum trajectory.
An interesting interpretation of the balliatic
coefficient C, in terms of the terminal velocity
v; of a bomb falling vertically, can be made
using (6.7) and (6.8). Here we should have
6 = O, and, at the instant the bomb strikes the
ground, v = v:, pe=p» Z =O0; hence

Po
C=—f (’U().
g

(6.12)

Thus, from a knowledge of the terminal velocity
vy, the ballistic coefficient can be computed as
soon as the form of the function f(v) has been
assigned.
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tity, r sin 4, is called the cross trail. Thirdly, as
:  figure 93 shows, the bomb will strike, unless a
special correction is made, not at the target T
| but at a slight distance forward at B. To account
J for this, it must be remembered that r depends
on C (ballistic coefficient), V, (indicated air-
speed of bomber at release), and H (altitude
| above target) but is independent of W and
hence of 6. Thus, only when @ is zero, namely
for flight in still air, upwind or downwind along
! {00’ will the bomb strike at T. Hence, to secure
1 - a hit at T, the bomb should be released when
the aireraft is a distance TB =1r (1 — cos 4)
: | ~ back from A along the track. The expression
r (1 — cos 6) is called the range component of
cross trail. It is usually very small, being ob-
scured by other bombing errors, and for this
; reason is sometimes omitted from consideration
i in constructing bomb sights.
So far, we have considered the target to be
stationary. In order to take target motion into
account we may resolve the target velocity VT

| . it - it 2 & < 12 1
-

¢——— RANGE R ———— 1<« TRAIL r —~

Figure 94. — The Bombing Problem — Three-dimensional View

into components along and perpendicular ¢ the
plane’s heading. Then, that component of the
target’s motion along the plane’s heading gives
the same effect as a head wind or a tail wind
depending upon whether its direction is the
same as that of V or — V. Similarly, the com-
ponent of the target's motion across the plane’s
heading may be considered as a cross wind and
absorbed in the solution for the drift angle ¢ by
combining it with the wind vector W. Hence,
the effect of target motion is merely to change
the values of V and W and then to regard the
target stationary as before. The range angle «,
whose accurate determination is the crux of the

whole bombing problem, is thus obtained from
Vct[ -—_r

(6.17) ¢ = tan?

: H

The final diagram for high-level bombing,
depicting the situation in three dimensions, is
shown in figure 94. The actual trajectory of

129




NAVORD REPORT 1493

MATHEMATICAL THEORY OF AIRBORNE FC

the bomb is shown with impact point at B, so
that, as i1n figure 93, the range component of
cross-trail is the distance TB. In still air, the
track of the plane would be the line OO’ but
under wind conditions the track becomes AA’.
A bomb dropped in & vacuum at point O would
strike at D at the same inatant that the actual
bomb strikes at B. It should be noted finally
that in the figure the actual trail is the distance
EB and that this distance also is equal to EP,

6.5 Mechanization

As formula (6.17) indicates, the correct
range or dropping angle ¢ is a function of the
trail, altitude above the target, time of flight
of the bomb, and the closing apeed, V. . Prelim-
inary to this, there is the probiem of establish-
ing the proper track, parallel to a collision
course with the target and distant from it an
amount equal to the cross-trail, r sin 4. A bomb-
sight computer for d.termining ¢ will then have
as inputs: r, H, t;, and ¥ . The trail, », is ob-
tained from trail tables, wherein it is given as
a function of altitude, airspeed, and bomb bal-
listic coefficlent, and can thus be set in by the
bombardier. The altitude input is available from
an altimeter while time of flight is tabulated
as a function of altitude. Closing speed V. is
obtained by tracking the target with a telescope,
keeping the horizontal (range) cross wire con-
tinuously on the target. Modern bombsights
have the telescope mechanically stabilized with

vertical and horizontal gyros so that physical -
- produce large range errors on the ground. Thus,

reference lines are available from which to
measure the range and drift angles. The drift
angle 6 can be obtained by having the bomb-
sight always point directly at the target. Then
the angle between the longitudinal axis of the
aircraft and the direction in which the sight is
pointing will be the drift angle providing that
the heading of the plane ig correct for the wind
canditions prevailing. The bombardier estab-
lishes the angle of drift by positioning the tele-
acope ¢ross wires 30 that the target moves along
the vertical cross wire. If the plane’s heading is
slightly off, the target will drift off the wire.
By means of an instrument called the Pilot
Direction Indicator, the pilot of the aircraft is
afforded a continuous indication of the direction
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in which the target drifts off the vertical wire
and can then direct his plane accordingly. Fin-
ally, the matter of cross trail is settled easily
by tilting the telescope transversely through a
small angle sufficient to intercept the correct
amount of cross trail on the ground.

8. LOW-LEVEL BOMBING

6.6 Impracticability in Range Angle Aiming
at Low Altitudes

A bombsight, designed to operate at altitudes
below 5000 feet, requires extreme accuracy in
measurement of the input variables when the
range angle method, outlined in Part A of this
chapter, is used as a criterion for bomb release.
This is especially pronounced when the altitude
falls below 1000 feet, as it does in the case of
depth-charging of submarines from low-flying
aircraft. At such low altitudes the trail term, r,
of equation (6.17) is negligible by comparison
and the range angle, v, is given quite accurately
by the “vacuum expression”

(6,18) ¢ =tan? -—) =tan?| V. ——) .
H oH )

The very form of (6.18) shows the close de-
pendence of the range angle upon altitude and
closing speed. Hence, unless the aititude and
closing speed can be held very closely to pre-
assigned values, errors in these quantities will

a 1% error in altitude measurement at H = 400
feet will result in a range error of approximate-

- ly 9 feet, V. being assumed equal to 350 feet

per second and without error. Similarly, a 1%
error in closing speed at V, = 850 feet per

gsecond and H = 400 feet gives a range error of

18 feet.

To overcome the above difficulties, recourse
is had to measurement of the angular rate, ¢,
instead of », as a criterion for bomb release.
The mathematical expression for e, derived in
the ne:rt section, shows it to be relatively inde-
penden? of the altitude for small values of the
altitude, a quality which serves as a sound basis
for a low-altitude bombsight.

oS
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Figure 95. — Low-level Bombing

6.7 The Angular Rate Principle

During the early stages of a low-level ap-
proach, when the target is at a considerable
distance from the aircraft, the angle of depres-
sion of the target (30° — «) changes very slowly
80 that the angular velocity of the target at the
observer’'s eye is low. As the aircraft nears the
target, the angular velocity increases, finally
becoming a maximum as the aircraft passes
vertically over the target. At some stage the
target was in an appropriate position for a bomb
to be released, and at that point it had an angu-
lar velocity that could be calculated in terms of
the height and ground speed of the aircraft. If
this calculated angular velocity is set up on an
appropriate bombsight in such a manner that we

.can detect when the target has an equal angular

velocity, then we have an indication as to the
instant, during the tracking run, when a bomb
should be released to strike the target. We now
derive an expression for the calculated angular
rate, ¢.

From figure 95 we note that

X
(6.19) tan¢ = -—— .
H

Differentiating with respect to the time, we
find, since H = O,

HX HY
p8eC’ P = —— — |
H2 H!

9889956 O - 8% - 10

" Therefore,

HY, HY,
= =
(H sec ¢)* H:+ X?

At the proper release time,

2H
X=Vt, =V —,
Yy g

whence, '
HY
2HV ¢

H +

g
With a little manipulating, this may be written

finally as
oH \
21{’)

Thus, (6.20) furnishes, at the correct moment
of bomb release, the angular velocity of the
target in terms of the height and closing speed.
It will be noted that for small values of H the

. 9/2
(6.20) o=

¥(1+

3

gH
term _Y_; is small, thereby accounting for the

relati\:'e insensitivity of ¢ to chianges in altitude.
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In actual practice, the time of free fall ¢, used
above must be corrected for bomb trail, lag of
the bomb rack in making its release, and also
for horizontal and vertical parallax introduced
by the physical separation of bombsight and
bomb.

6.8 Mechanization

An early mechanization of the angular rate
principle involved a rotating, internally illumi-
nated drum upon which was cut a fine pitch
spiral. A portion of the drum, when viewed
through an optical system, revealed to the
bombardier a set of horizontal illuminated lines
moving downwards at a uniform velocity. The
drum was driven about a vertical axis by a
constant speed motor through a variable speed
gear which allowed for variation in the rate of
rotation of the drum. The variable speed gear
in turn was connected by a flexible drive to a
computer whose inputs were ground speed and
altitude. Proper functioning of the computer
then produced a drum rotation rate such that
the iliuminated horizontal lines moved at an
angular rate equal to that of the target at the
correct moment of bomb release. .

When the target first appeared to the bom-
bardier, on the upper end of the illuminated
“ladder”, it was moving downward more slowly
than the horizontal lines which appeared to be
overtaking the target. The difference in rates
of the target and the lines became less and less,
until at one instant the target and lines ap-
peared stationary together. This was the correct
moment of bomb release. After this inatant, the
target had a greater angular velocity than the
lines, and appeared to overtake them.

More modern mechanizations of the angular
rate principle employ a gyroscope to measure
the angular rate of the target. Such sights are
rotatable about horizontal and vertical axes so
that the bombardier, after first aligning the
sight properly in azimuth, tracks the target by
rotating the sight vertically at such a rate as
to keep an illuminated reticle on the target.
Rotation of the sight precesses the gyroscope
whose precession in turn is opposed by a spring.
The tension of the spring is preadjusted for the
bombing course to be run. It is set so that it
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will balance the torque of the gyroscope when '

the gyroscope is precessed at the angular rate
that is critical for that course. One of the prin-
cipal advantages of the modern angular rate
bombsight is that it removes the undesirable
feature in the early mechanizations of having
the pilot judge when zero relative rate between
the moving lines and the target is achieved.
Indeed, any successful mechanization which re-
moves the personal element is bound to improve
the accuracy of the sight in question.

C. DIVE OR GLIDE BOMBING

6.9 Introduction

The situation obtaining in dive or glide bomb-
ing under conditions of no wind is represented
pictorially in figure 96. At the point of bomb
release, the flight line OA is offset from the
sight line to the target OT by the angle

- AOT = A

This angle intercepts on the ground a dis-
tance L, called the linear aiming allowance. In
terms of the sighting angle ¢ and the dive or
glide angie ¢ we have, where X is the range DT,

H
(6.21) A=90°—¢—0=arctan?-—0.

The aiming allowance L is found from
(622) L=Hecoty—-X.

In the vacuum case, the range DS may be found
by eliminating t,, the vacuum time of flight,
between the familiar relations

(6.23) H=13gt*+4 Vsindt,DS=1tVcost,

where V represents the true airspeed of the
airplane. Thus it is found that

(624) DS =

V cos §

) [‘[(Vsino)wng— Vsino]
g ) .

and,
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Figure 96. — Dive Bombing

(6.258) t; (vacuum) =

J(Vsin 6)* 4 2g9H — Vsin ¢

v

Hence, neglecting air resistance, the angular
aiming allowance A is, from (6.21),

(6.26) A (vacuum) =

‘ V cos @
cot — 1[ N(V sin )4 2gh —Vsinag]—a-

gH

By way of illustration we find that for V =300
knots, H = 4000 feet, 8§ = 40°:

DS = 3345 feet, t; (vac.) = 8.62 secs,,

A (vac.) =10°6’.

Upeon consulting a ballistics table for dive bomb-
ing, we find that when air resistance is taken
into account, the range DT is 3299 feet, t, be-
comes 8.91 secs., and A is increased to 10°29'.
The ground lag TS here is thus 46 feet.

6.10 Angular Rate of Sight Line
(Vacuum Case)

From figure 96 and the relationship

-

P

(6.27) tang=—,
H

we find, upon differentiating with respect to
the time,
HX — XH

g 8ec? p =
HZ

Solving for » and using (6.27) we find

: -Hx'-xa']
o= C08? p | —————rmr
H’
'X—fltan¢
= cos8% ¢
H
ar
CO8 ¢ . .
(628) ¢= H [XCOS(p-—HSin(p .
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If we consider the origin of coordinates to be
at the target, then

X=—Vecosbd=—-V,

and .
H=—Vsind=—V,.

Equation (6.28) then becomes

COS ¢

(629) o= [ V. sing — Vi cos ¢] .

Let us now rewrite (6.29) in the form

. 8in ¢ cos ¢ r
= VH -— Vx cot (4
B |
and combine it with the “hitting criterion”
H H
cot o = =
Vit DS
to get
. sin ¥ H ’
(630) py=——r| Vy—-—eoer .
2H t, _I

From (6.23) we find

H
—_— V”+igtf)
t

which, combined with (6.30), yields

. g
(631) y=— ——t 8n2y.
4H

Employing {6.25) we may write, finally,

. sin2¢
= 4H [VVH2+2QH—VH]'

We note from (§.32) that the angular rate of
the sight tfine, ¢, is a function of H, V,, and
¢ only.
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(6.32)

6.11 Mechanization, using Angular Rate

Formuia (6.32) suggests a possible mechani-
zation for a dive bombsight. If a mechanicai
computer, with inputs ¢, H, V,, and operating
in accord with (6.32), is used to drive a tele-
scope at the rate ¢ given by (6.32) then con-
ceivably a pilot could so fly his plane that the
target when viewed through the telescope would
show no motion with respect to its cross-wires.
At the instant of synchronization of target and
cross-wires, the bomb would be released. The
input ¢ would be obtained from the telescope’s
position in a vertical plane relative to the spin
axis of a vertical gyro while H and V, wouid be
obtained from an altimeter and its differential
output.

During the recent war, a sight was con-
structed to operate on the above principle but,
after numerous flight tests, was finally rejected
for several reasons. Firstly, it was found too
difficult for the pilot to maneuver his plane in
the diving attitude so as to achieve synchroni-
zation. Actually, the pilot had to fly a curved
path through space and at the same time try
£0 recoguizé & condition of no drift between the
cross-wires and the target. Secondly, when once
in a dive, the pilot found it almost impossible
to make a deflection drift correction since there
is no way to make an airplane move sideways in
space. The fact that range and deflection drift
change continuously creates a problem virtually
impossible for the dive bombing pilot to solve.

The difficulties just cited could be made less
prominent perhaps by a new mechanization pro-
cedure but could hardly be avoided altogether,
since they are inherent in the dive bombing
method. The method of toss bombing, consid-
ered in section (6.13), eliminates these diffi-
culties for the pilot by permitting him to dive
straight at the target.

8.12 Correction of Angular Rate for Trail

Since bombing does not take place in a
vacuum, account must be taken of the effects of
air resistance upon range. Referring to figure
96 we note that the actual range X is DT =
DS — TS, where, because of the relatively low
altitude for release H, the ground lag TS may
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be replaced by the trail r, both being small. We
have, then,

(6.83) X=Vit, —r

H
(6.34) cot p = —mm—
th, -7
Using (6.34) in
sin 2 I’
¢ = (V,H—chc’t¢)r
2H

we obtain at release time
Ve (Vuty — H) ~— rV,,]
thl —-r ’

sin2¢

?:
| oH

; or, upon rearrangement,
1
i . sin2¢ [ Vuty,—H

= -

2H t,

] .\
)
| Vit,

If now the last factor be expanded and non-

'rV"
Vit

] ,

rd

linear terms in be dropped, we find,

ity

8in2¢ Vntf—H
= P = [ :

2H t

r rVu
N 1+
Vit, Vit

)_

o . sin2¢ [Vit,—H
1! (635) o= [ R

2H

1
[1—}-7’( —
Vit,

t

Vu \]
vivat—m )1

o Recalling now the relation

Vuty — H= — igt,2,

and using it in (6.35), we obtain

. g
(636) ¢=——-°t,8iN2p -
4H
H T
[1 + : .
Vit Y gt/
Since cot ¢ = , we can put (6.36) in the
I3
form *
. g reot e
(637) ¢=——+t;8in2¢|1 + —nr]|.
4H 3 9t7

Comparing (6.37) with (6.31) we note that the
quantity in the brackets in (6.37) is the neces-
sary correction factor to the vacuum rate given

by (6.31). Thus,
reoty
+ .
3 gt;7

6.13 Basic Release Conditions for a
Stationary Target

Poin— ¢

(6.38) air

L ]
vacuum | 1

D. TOSS BOMBING

In toss bombing, the airplane is flown initially
along a collision course, a straight line path
containing the target. If the bomb were released
enroute, gravity would cause it to fall short. To
overcome the latter, the pilot pulls out of his
straight-line dive and releases the bomb at a
precalculated point along this pull-out curve.
The essential geometric features of the problem
are indicated in figure 97.

The straight-line dive at the target T, here
considered to be stationary, is begun at a point
above N, pull-out takes place at O along the
curve OP. If the point P is calculated properly
and release of the bomb occurs when this point
is reached, the bomb trajectory will intersect
the target. In the theoretical development to
follow, we assume the final velocity of the air-
craft in the dive to be reached at the point N
and that this final velocity, which we shall
denote by V, remains constant along the timing
run NO and the pull-up arc OP. Knowledge of
the time it takes the aircraft to cover the dis-
tance NO is used in determining the closing
time, ¢, i.e., the time it would take the aircraft
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Figure 97. — Toss Bombing

to fly into the target along the collision course
OT. The quantity ¢, in turn, is needed for com-
puting the position of the release point P.
Since the speed V is constant, the point O can
be determined by requiring the time for the
aircraft to cover NO to be a fixed fraction f,
(f < 1), of the closing time, ¢.. If we denote the
altitudes of the points N and O by k, and h,,
then from similar triangles it is apparent that
b=k tyo

= =f,
h, te

wherein {y, is the time for the aireraft to cover

the timing run distance, NO. From this it fol-
lows that the point O corresponds to an altitude
h,, where

(6.39) &k, = k.
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The relationship (6.39) can be effected by use
of a suitably arranged altimeter. The quantity
t. is then 1/f of the time taken for k, to drop
to 1/(1 4+ f) of its original value.

As a solution to the toss bombing problem,
we seek a formula, in terms of basic inputs, for
the pull-up time ¢,, that is, the time to fly along
the pull-up arc from the initial pull-up point O
to the bomb release point P, We shall assume a
stationary target and neglect air resistance.

We note first that the airplane has an accel-
eration arising from the curvature of the pull-
up path and that this acceleration is normal to
the direction of motion at any instant since
the tangeantial component of the acceleration
vanishes in accord with our assumption of con-
stant speed along the pull-up path. If we denote
this acceleration, measured in gees, by ., and
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the corresponding radius of curvature of the
pull-up path by R, then pg = V?/R. Let a set of
coordinate axes xOy be chosen with origin at O
and with the positive z-axis passing through
the target. If now t is the time taken for the
aircraft to fly a distance s along the arc OP,
and @ is the angle through which the tangent
to the path has turned during this time, then,

ds »g s
(6.40) do = = ds = dt.
R V2 v

Consequently, at any time during the pull-up
period, the angle ¢ will be given by the integral

4
v

' g

o

where time is measured from the point O.
The total pull-up angle is then

t,
g
(6.42) 0,:—[pdt.
\4
o

If now we introduce the average normal acceler-
ation x computed over the time interval
0< t<t, that s,

i,
1
pA=——> udt,
t,
0

equation (6.42) can be rewritten

"
(6.48) 6, =

t,.

A standard aircraft accelerometer mounted
in an airplane shows at each instant during
pull-up the number K of gees present at that
instant and acting normal to the direction of
motion. If 3 is the dive angle, then approxi-
mately,

(6.44)

This relation is sufficiently accurate to be useful
for small pull-up angles. It is exact at the be-
ginning of pull-up since in the dive, K = cos 3§
and p= O.

,Lgé (K—~—cosd) g.

If = and y are the coordinates of the bomb at
any time, t, always measured from the begin-
ning of pull-up, then the components of velocity
on the coordinate axes at any instant during
pull-up are,

(645) z=7Vcosd, y="Vsing.
Hence,
t t
(6.46) x:V[cosﬁdt,y:V/sinodt.
0 0

Eliminating dt from (6.46) by using (6.40),
we obtain r .

V3 cos 6
(647) 2=—— [ dé,
: g H

o
6

V2 / 8in ¢
do.
g M ,
o

By placing t = ¢, in these relations, expressions
are obtained for z,, v, ., 4., where x, and y, are
the coordinates of the release point P.

After the bomb has been released, the impor-
tant force acting on it is gravity. Hence, for

this phase of the motion, the components of
velocity and the coordinates are

Y=

r=z, 4 g(t—t,) sins,
‘é:&,—g(t—tr) cos s,
2 =2, 4 z,(t — t,)+ g (t — t,)*sin3,
Y=vr+ ¥ (t—t,)—=3g(t — t,)* cos .

In order to secure a hit, z must equal Vi,
when ¥ = O, since the coordinates of the target
are (Vi., O). Let this occur when ¢t = ¢,, so that,
from equations (6.48),

(6.48) ?

Vtc =X, + é,(t;. _— tr)
+ 39 (ti— t,)%s8in 3,

0 =¥, + y’r(th'— tr)
—3g(ty — t,)%cos .

(6.49)

On replacing z,, ¥, ., ¥, by their values from
equations (6.46) and (6.47), the following basic
equations are obtained.
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e,
Ve cos @
Vt. = dé
g I
9

+V(ts—t.)coss,+4g (t, — t.)* 8in &

6.
(6.50) o

\4 sin 8
0= [ de
g »

/]
+V(ta—t.)sind,—fo(ty — t,)%cos 8.

Equations (6.50) form the basis for a toss
bomb computer since a formula for ¢, may be
obtained from them by eliminating the param-
eter {,. The formula will be a function of the
input parameters ¢, V, 4,, and 8. The value for
t. is obtained during the timing run, 3 is given
by a dive angle indicator, and ¢, is determined
in terms of pull-up acceleration. When values
for these parameters are fed into the computer,
the release time is automatically computed.

Instead of eliminating only ¢, from equations
(6.60), it is easier to eliminate ¢, — t,, to solve
the resulting equation for ¢,, and to then find
the release time t, from (6.43). Solving the
second of equations (6.50) for ¢, — ¢, we find,

14
(6.61) th—t, = ——l- sin 4, 4
geoss |
6 sin ¢
sin® ¢, 4 2 cos & dé
s

o

Substituting the right member of (6.51) into
the first of equations (6.50) gives,

gt. co8 5 cos @, + sin 8 sin 6,
(6.52) > =

€08 §

A sin @
sin 4, 4 | sin®* ¢, + 2 cos 8/ dé
o #
8, é,
cos 8 sin ¢
+ / dé + tan s / de.

I n
0 0
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In equation (6.51) the positive sign is uaed
before the radical since a negative sign would
make ¢, less than t,.

Equation (6.52) contains the desired quan-

- tity 4, in a rather complicated way, one from

which an exact explicit solution is not easily
obtained. Nevertheless, this equation is basic
to further discussion insofar as a practical solu-
tion of the toss bombing problem is concerned.
We shall, in the next paragraph, solve equation
(6.62) for 4, by making suitable approxima-
tions.

6.14 An Approximate Solution for the
Release Time

As a first step in obtaining an approximate
solution of the basic equation (6.62) we replace
# in the integrals by the average normal accel-
eration, i Approximate values for the integrals
can then be found. The resulting form of the
relation is

gt. €08 & cos 0, + sin § 8in 4,

(6.53) =
vV €08% §

r 1—coséd,
Lsin 8-+ ~[8in?0, 4+ 2 cos 8 —

m
1 1—cos¥,
+Tsin0,+——__—tan8.
f & ’

On the assumption that pull-up angles will
be small, we next replace the trigonometric
functions sin ¢, and cos 6, by ¢, and 1 — 3+ 467
respectively. The resulting equation in ¢, then
has the form

gt. |‘(1 — $6,%) cos & + 4, sin 8]
(6564) — =4, - .
v I_ cos? §

1 1 1
1+ 1+_-_~c038 +—_0,+—_0.’t&.n8.
n B 2

Equation (6.54) is a cubic polynominal in 4,.
However, since the solution sought is expected
to be valid only for small pull-up angles, we may

[oanmnes BN cscne: BN s |
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ignore the term of degree 3 in 8?. at least if
cos 8 is not too small. This then gives the follow-
ing quadratic in ¢,.

(6.66) (1+20)6,°tand +2(1+0) 9,
2gtc;

v
where

4+ Y3+ cosd)

co8 §

T =

The corresponding equation for t,, obtained by
using relation (6.43), is

1420

(6.56) gut,? tan § 4 (1 4-0)t, —t.=0.

Equation (6.56) has a positive and a negative
solution. The positive solution, which applies
here, is

657 t, = .
1420 _
2t 140+ 1(1+0)242 7 gut.tand
Tk:is may be rewritten in the form
t.cos 8§
(6.58) t, = .
%+ cos s+ § w(x+ coss)
2
1+ Y1428
where
1420 gutc
= hd tan &
(14 0)? v
gtcsin § =
1 %4 %+ cos$

Let K des:gnate the time average of K from
the beginning of pull-up until the release of the

bomb. From equation (6.44) it follows that

K == 1 + cos 8, so that equation (6.68) can be
expressed in the form

t.cos 8

t, = .

K+ § K(K—cosd)

(6.69)

2

1+ y1+28

wherein g8 can be rewritten now as

gt.8in 8 K —coss
(6.60) B = .

14 K

As the final form for the expression for the
release time t,, we rewrite (6.59) as

t.y
K+ YK —K
where the function y is given by
K+ V K —
¢ =

K + YK(K — cos 8) 1+\(1+2p

(661) t, =

2 cos 8
(6.62)

The particular property of the ¢ function which
makes it useful in this connection is that,
although it is a function of the three variables
R, 5, and t./V, it is chiefly a function of 3, show-
ing but little variation with X and t./V over the
ranges of values of X and t./V which occur in
toss bombing. Values of the ¢ function are tabu-
lated for appropriate ranges of these variables
in table 6.1 (Units used in this table are feet
and seconds, with g taken as 32.2).

Since y reduces to unity when § =0, and
since ¢ shows relatively little change when K
and t./V are varied, equation (6.61) shows that
v can be regarded as a factor whose purpose is
to reduce the pull-up time from that for hori-
zontal bombing to the correct value for bombing
from a dive.
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Figure 98. — Air and Vacuum Trajectories

6.15 Air Resistance in Toss Bombing

6.15.1 The Trajectory Equations in Air

In studying the effects of air resistance on
the bomb trajectory it is best to employ a coor-
dinate system consisting of horizontal and verti-
cal axes ¢ and » with origin at the point of
release as indicated in figure 98. In this figure,
the curve PT is a vacuum trajectory through
the target at T, PST’ an air trajectory with the
same release conditions, and P'T an air trajec-
tory from a release point determined so that the
bomb will hit the target. The percentage in-
crease in ¢{. required to obtain the trajectory
PTis

At. Vat. TS
(6.63) = =
tc Vt. or

The equations of the vacuum trajectory, using
¢, n coordinates, are

(¢e=U.(t—t)

n= Wr(t—tr) +%g(t_tr)2r

(6.64)

where U, and W, are the horizontal and vertical
components of velocity at release. If the coor-

dinates of the target are ¢, and », at time t =,
elimination of the quantity t, — ¢, from equa-
tions (6.64) yields the relation

W, g )
&+ &,
U, 2U,2

(6.65)

™=

The corresponding relation for the air trajec-
tory PST’ will now be obtained. If u=¢ and
10 =, then the velocity of the bomb in its path
isv :v u® 4 v*. The retarding acceleration, a,
due to the air, is assumed to be representable
in the form

(6.66) a = Bv?,

where B is constant along the trajectory. The
components of the acceleration in the ¢ and y
directions are then,

(6.67) a, = Buv, aﬂ = Bwv.

¢

From equation (6.67) the equations of motion
of the bomb are

(6.68) u=— Buv, w = g — Bwv.
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Let ¢ be the angle between a tangent at any
point on the trajectory and the horizontal, so
that

w
(6.69) tan p = —.
U

Equations (6.68) can now be integrated ap-
proximsately under the simplifying assumption
that the total change in direction along the
trajectory is small. Thus, if we denote the mean
value of ¢ over the arc PT' by ¢, the constant B

cos p
can be conveniently replaced by B , 80
cosy
that equations (6.68) then become
(6.710) = — Bu*secy w=g — Buwsecy.

Integrating the first of these equations and
simplifying, we obtain

U,
(6.71) u =

14 BU, (t—t,) secy

Using this result in the second of equations
(6.70) gives

. BU,wsecy
w=g — ’
14 BU, (t—t) secy

whose solution is

W.+ [g(t—t,) +4BU, (t--t,)2gsecy]
(6.72)w=

1+ BU,(t —t,) secy

Equations (6.71) and (6.72) give the com-
ponents of velocity in terms of time measured
from the beginning of pull-up and the conditions
at release. Further integration gives the coor-
dinates ¢ and » of the bomb after release in the
form

142

B cos ; BUr(t - tr)
¢ = In [1 + ]
B cosy
(6.78)
ﬂ:*ﬂ(t—-t,)’-‘- —
2BU, sec ¢
W, — g cos’y/(2BU,)
+ - .
BU, gec ¢

BU. (t—tr).l
m[1+____ .

cosy J

The elimination of the quantity ¢ — ¢, be-
tween these equations yields the equation of the

air trajectory PT’ in the form

W, g€
(6.74) n= ¢+ {L4-¢{(8)],
where
cos'p
(6.76) e(f) =—1—
B¢
+ V2‘B’A§’(8236 sece 1).

. By taking the first four terms in the expansion

of ezBE 8€C ¢ and dropping the rest, an approxi-

mate formula for ¢(¢) is found to be

(6.76) £(¢) = § Btsecy.

Since equation (6.74) differs from equation
(6.65) only in the term ¢ (¢), this term is then
the desired term that accounts for air resistance.

6.15.2 The Ground Error

The distance T'T, which is the error on the
ground due to air resistance acting on the bomb,
can now be evaluated. We shall denote this error
by A &. (It will be recalled that the coordinates
of the target T are (&, na) in the §, » system of

p—ey ey — pe——y g

A |

-
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coordinates.) The coordinates of the point TV
are then (¢, — A &, n.). If these are substituted
into equation (6.74) and use of relation (6.65)
be then made, the result is

W.aé g
0=— +
U, 2U,s

(6.77) [— 2¢& Aés

+att+ (G—ad)e(l—a8)].

Since the unknown A ¢, is obviously much
smaller than ¢, the term A §? can be neglected
in comparison with the term — 2§, A &. Simi-
larly, upon employing relation (6.76) with

(=6 —Ah
we can replace the term
(B—Ak) e(a— 08
by
§B (&3 — 3 824 &) sec ;.
Thus equation (6.77) can be rewritten as

WrAéh g
+
U, U2

0=— [— 2& A&

+ 3B(&° — 3674 &) seci],

whose solution for A ¢, is

Bgtisecy
(6.78) Aé =

8(U.W, + gt, + Bgé:? secy)

In using the formula (6.78) it is sufficiently
accurate to replace y by 8. The quantities U,,
W, and ¢& can be computed from the formulas

U, =Vecos (3—-6,),
Wr=V Sin (8 —er) ’
& =Vi.cos$ —x,cosd—y,8ind.

Formula (6.78) can now be used in calculating
the percentage correction 4 t./t. of {. necessary
to secure a hit. Upon adjusting the toss bomb
computer to account for this correction, the
bomb will then be released at point P’ (see
figure 98) and its trajectory will pass through
the target. Although we shall not justify the
statement here, it can be shown that the per-
centage correction cited is given approximately

Vt.
by k T, where k is an empirically determined

 constant and C is the ballistic coefficient of the

bomb.
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Chapter 7

ROCKETRY

7.1 Iintroduction

The problem of how to aim and fire rockets
from aircraft is considerably more complicated
than that of aiming and firing bullets. The com-
plications stem mainly from the ballistics of
the rockets snd the method of launching air-
berne rockets. The two are not mutually exclu-
sive since the trajectory of the rocket depends
upon the manner in which it is launched as well
as upon other considerations. A complete dis-
cussion of the theory of motion of a rocket is
beyond the scope of this book. For such a dis-
cussion the reader is referred to Reference 18
of the bibliography in the back of this book. We
shall concern ourselves only with a qualitative
discussion of how rocket trajectories are ob-
tained and the corresponding sighting problem.
Furthermore, we shall be mainly concerned with
air-to-ground firing of rockets. Air-to-air com-
bat using rockets will be briefly mentioned at
the close of this chapter.

7.2 Methods of Launching Airborne Rockets

The motion of a rockei can be divided into
three distinct periods: the launching period, the
period of burning after launching, and the period
of motion after burning is over. During the
launching period, the rocket is under the influ-
ence of the aircraft which is carrying it. During
the burning period, the rocket is subjected to
the forces of gravity, jet forces, and aerody-
namic forces. After the rocket fuel is consumed,
the rocket moves under the gravity and aero-
dynamic forces only and its behavior is then
similar to that of a bomb.

Most rockets are fin-stabilized in the same
manrer as bombs. The trajectory of such rockets
differs from that of bullets in three respects:
(1) rockets are slower; (2) rockets tend to
follow the direction of flight of the aircraft
while bullets travel in the direction of aim of
the gun; and, (3) the rocket trajectory has an
appreciable curvature. These three character-

istics have considerable infiuence upon the aim-
ing problem. Since we have a longer time of
flight, greater allowance for target speed and
wind must be made and, in addition, the greater
curvature of the trajectory means larger grav-
ity drop allowance.

Since the rocket tends to follow the direction
of flight of the aircraft, its trajectory is highly
dependent upon the manner in which it is
launched. Thus the launching device, the
method of stabilization (whether fin or spin-
stabilized), and the attitude of the aircraft at
the instant of launching, all contribute to the
aiming problem. Since spin-stabilized rockets
are still very much in the experimental stage
we shall limit our discussion to fin-stabilized
rockets.

There are four methods in common use for
launching airborne rockets: (1) retro-launching,
(2) fixed launching, (3) Dynamic controlled-
displacement launching, and (4) drop launching.
Let us consider each of these in order.

In retro-launching, the rocket is fired to the
rear of the launching aircraft. This method of
launching is very effective in anti-submarine
warfare,

Fixed launching applies to rockets fired while
held in fixed positions and in orientation relative
to the launching aircraft. Thus the term in-
cludes: (a) post launching, in which the rocket
is held in position by lugs and is free of the
aircraft after moving a very short distance;
(b) rail or tube launching, in which the rocket
is guided for the first several feet of travel;
and (c¢) fixed displacement launching, whereby
the rocket is lowered into a fixed position below
the aircraft before it is ignited.

Dynamic controlled-displacement launching is
the term applied to the method of launching in
which the rocket is dropped before ignition, but
is guided by a yoke which holds the rocket in
fixed orientation relative to the airplane until
ignition occurs. This method of launching has
been abandoned in favor of drop launching.
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Figure 100. — Coordinate System

Drop launching is the term applied to the
method of launching in which the rocket is
dropped completely free of the aircraft and is
ignited by a delay firing device after it reaches
a safe distance below the airplane.

7.3 Coordinate System

Before we consider the trajectory of the
rocket, let us focus our attention upon the coor-
dinate system which will be used to describe the
trajectory. The action will be considered to take
place in the vertical plane and any horizontal
corrections will be superimposed. Figure 100
shows the orientation of the lines and angles.
Let us further define
(7.1) F.L. = Flight line, the direction of

motion of the aircraft;
L.L.= Launcher line, attitude of
launchers;
E.L.L. = Effective launcher line, line of
departure of rocket;
S.L. = Sight line, line from ownship
to target;
B.S.D.L. = Boresight datum line — a ref-
erence line fixed in the air-
plane;
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Z.L.L, = Zero lift line; a reference lift
line fixed in the airplane;
a= Angle of attack, angle from
the B.S.D.L. to the F.L.;
a, = Angle from the B.S.D.L. to
the Z.L.L.;
8§ = Dive angle, angle from hori-
zontal reference line to F.L..;
o = Angle from the horizontal to
the sight iine;
A = Angle from the sight line to
the flight line;
. A=1Iead angle, angle from the
sight line to the B.S.D.L.;
y = Angle from the horizontal to
the B.S.D.L.;
fa = Angle from boresight datum
line to E.LL.L.;
T = Present range.

The clockwise direction is taken to be positive.

Note that the launcher line mey be offset
from the boresight datum line by a fixed angle.
Since both lines are fixed in the airplane, this
angle is constant and is measurable. The angle
fa is actually the angle that the rocket turns

.
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in the direction of the flight line from the
launcher line and thus it should actually be
defined from the launcher line. However, to
simplify the derivation which will appear later,
we shall assume that the boresight datum line
and launcher line coincide. In any airpiane
where this is not the case, the constant offset
angle can easily be accounted for as is made
amply clear in rocket sighting tables.

7.4 Qualitative Discussion of Trajectories

The motion of a rocket can be defined by
Newton’s laws and the differential equations
involved can be derived. However, these equa-
tions are quite complex and their derivation
would consume considerable space as can easily
be seen by referring to Reference 18 in the
Bibliography. For the purpose of this book, let
it suffice to say that under justifiable assumption
of the aerodynamic forces and with experimen-
tally determined values of the necessary para-
meters, the equations of motion can be solved
and the pertinent data of the trajectory can be
tabulated. We shall, therefore, discuss only the
qualitative characteristics of the trajectories
and their application to the sighting problem.

We begin the discussion by considering the
trajectories of fixed-launched rockets. Since the
rocket is already moving through the air mass
with the speed of the aircraft, the air acts on
the fins, turning it into the wind as soon as it
leaves-the launcher. Angular momentum carries
it beyond the direction of the wind and, conse-
quently, its direction oscillates about the direc-
tion of its vector velocity, This oscillation dies
out, leaving a well defined initial direction for
the rocket trajectory which we shall refer to as
the effective launcher line. Thus the initial
direction of the path is along this imaginary
line whose direction is a certain fraction f of
the way from the launcher line to the flight
direction. The quantity f is called the !aunching
factor. It is possible to derive a formula for this
launching factor and to compute its value which
depends upon the rocket type, the length of the .
constrained motion on the launcher, the propel-
lant temperature, and the indicated airspeed of
the aircraft, but not on the dive angle. There is
a launching factor both in the vertical plane and
the traverse plane.

Since the rocket starts out in the general
direction of the aircraft it is necessary to de-
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termine the aircraft’s direction in terms of the
thrust direction. This is accomplished by con-
sidering the boresight datuin iine which is fixed
in the airplane. Since the latter is at an angle
a, from the zero lift line of the aircraft, then,
considering the influence of gravity, the flight
direction will be at some angle a — a, below the
zero lift line. This angle is inversely propor-
tional to the square of the indicated airspeed,
Vgi. If the airplane is nosing up or down, there
is a centripetal acceleration a. in the direction
normal to the flight path to be considered. This
acceleration is given by

(7-2) Ay = Va 8. .

The formula for the attack angle « can then

be written as
b

2
Gg

(1.8) a=a, + (g cos § — V48)

where b is a constant of proportionality which
depends upon the airplane. See figure 101.
The above discussion assumes that the rocket

is launched into a uniform air stream. This
assumption does not hold in regions close to an
aircraft wing. It is, therefore, necessary to
determine an “effective angle of attack” from
sighting data. The method will be explamed
subsequently. '

The gravity drop term of the rocket trajec-
tory depends upon the rocket type, propellant
temperature, the dive angle, the launching
speed, and the slant range to the target. This
gravity drop is computed from the simplified
equations of motion and the values are tabulated
together with other ballistic data for each
standard rocket type. This data consists of
tables of trajectory drops, launching facter,
flight times, and projectile velocities. Numeri-
cal studies on the values of the trajectory drop
for many rockets currently in use has revealed
that there exists linear and quadratic functions
of the range which can approximate the trajec-
tory drop and angle of fall. The coefficients for
these functions also are tabulated. A portion of
a typical trajectory drop table for a 30° dive
angle is illustrated in table 7.1.

Table 7.1
Trajectory Drop — 30° Dive Angle
Trajectory Drop (Mils) Normal to Effective Launching Line

o \*] (=] Q («] o ' L] o

Range 0°F 40°F 70°F ‘ 100°F 0°F 40°F | 70°F 100°F

(yds)
320 knots 380 knots

> 98 97 97 95 .99 99 98 97
500 27 24 21 19 23 20 18 16
600 30 26 23 21 25 22 20 18
800 34 30 27 25 29 26 23 22
1000 39 34 31 29 33 29 27 25
1200 43 38 35 32 37 33 30 28
1500 49 44 41 39 43 39 36 34
2000 61 55 51 50 53 49 46 41
2500 74 68 64 62 65 60 57 35
3000 88 82 78 76 78 73 69 68
4000 118 112 107 106 107 101 97 97

148




FT

ROCKETRY

POSITION AT RELEASE

—LL,
8. S' D' LI

POSITION AT IGNITION

Figure 102. — Drop-launching Conditions

In drop launching, the rocket is dropped com-
pletely free of the airplane and the ignition of
the rocket is delayed. Thus, there is a period
of free fall. The effective launcher line becomes
effective at the ignition point and a further
correction would be necessary on the sighting
equation. See figure 102. Experiments have
been devised in order to obtain the necessary
information on the free-fall part of the trajec-
tory and the effective angle of attack.

Retro-launched rockets are fired backward

relative to the aireraft in a vertical plane and
at low altitudes. See figure 103. Under these
conditions we may make the assumption that
the only forces acting upon the rocket are the
rocket jet which produces a constant accelera-
tion equal to the velocity during burning divided
by the burning time, and the force of gravity.
The computation of the rocket’s velocity rela-
tive to the aircraft becomes the major ballistic
data. The trajectory is then combined with the
sighting problem,
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Figure 103. — Retro-lounching Conditions
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Figure 104. — Gravity Drop Compgrison

7.5 lllustrations of the Effects on Rocket
Trajectories

Many things enter into the determination
of rocket trajectories. Some of these factors
introduce errors in the firing of airborne rockets.
These effects are best described by illustrations
and the following figures are presented here for
visual explanation.

Figure 104 shows the difference in magnitude
of the gravity drop effect for shell fire, rocket
fire, and bomb dropping, and clearly illustrates
the intermediate role of the rocket.

Figure 1056 shows the effect of the dive angle
on the trajectory drop and illustrates the fact

that the trajectory drop decreases as the dive
angle increases.

Figure 106 shows the effect of Launching
Speeds on the rocket trajectory and illustrates
the well-known fact that the greater the speed
the smaller the trajectory drop.

Figure 107 shows the effect of range misesti-
mation on the trajectory.

Figure 108 shows the effect of temperature
on the rocket trajectory. The burning time and
distance of a rocket depends greatly upon the
temperature of the rocket propellant at ignition.
This in turn affects the trajectory as illustrated
in the figure.
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Figure 105. — Effect of Dive Angle
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Figure 107. — Range Misestimation

154




a———

ey bt UM R N DU DN PN GNEE MR SN G e e

ROCKETRY

END OF BURNING

Figure 108. — Effect of Rocket Temperature




NAVORD REPORT 1493

MATHEMATICAL THEORY OF AIRBORNE FC

FLIGHT LINE OF AIRPLANE

FLIGHT LINE PARALLEL

Figure 109. — Effective Launcher line in lateral Plane

Figure 109 illustrates how the rocket turns
into the flight line of the aircraft in the lateral
plane. Thus, there is an effective launcher line
in both the vertical and lateral plane.

Figure 110 illustrates the effect of firing in a
skid or side-slip. The rocket will again tend to
follow the direction of motion of the aircraft.

Figure 111 shows the effect of the angle of
attack on the aiming problem of rockets, If the
B.S.D.L. rides higher with respect to the flight
line, a large sighting angle is necessary. Condi-
tions to increase the angle of attack are shallow
dive, heavy airplane loading, or low indicated
airspeed.

Figure 112 illustrates the effect of nosing
over or pulling up at the time of fire. A pull-up
will tend to undershoot the target while a nosing
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over will tend to overshoot the target. This kind
of pull-up is not to be confused with the toss
bombing technique where the projectile is re-
leased at a predetermined instance during a
pull-up from a straight-line dive.

Figure 113 illustrates a typical curve of ap-
proach for a standard airplane tracking a ground
target with a fixed sight setting.

Figure 114 illustrates the effect of wind and
target motion on the aiming problem. It is seen
that the effect of the wind is essentially the
same as a target motion and therefore need not
be considered as a separate problem. Conven-
tional sighting systems measure the relative
motion of the airplane and the targei and this
relative motion contains the wind effect as an
inherent part.
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Figure 112, — Nosing Over or Pulling Up
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7.6 The Sighting Problem

It has been pointed out that in the forward
firing of rockets the direction of motion of the
rocket is essentially the direction of motion of
the airplane at the instant of firing. Hence, in
order to hit the target the airplane must have
the proper direction of motion at the instant of
firing. The airplane, therefore, is maneuvered
into a correct attitude and held there for a
period of time after which the direction of
motion will have taken a calculable position
with respect to the airplane. This direction of

motion may be specified in terms of an angle
between the flight line and the sight line. The
behavior (ballistics) of the rocket itself may
now be superimposed upon this problem and the
correct lead angle may be determined. This,
then, is the sighting problem, of which we con-
sider the following three distinct cases:

(a) attacks against a stationary target;

(b) attacks against a target moving in
range;

(c) attacks against a target moving in
azimuth.
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Figure 116. — Rate of Change of ¢

These cases are treated separately and the com-
plete picture is obtained by superposition.

A. Stationary Target

We shall first consider “the sighting
angle” which is needed to compensate for the
gravity drop of the rocket. This angle may be
measured from the sight line to the boresight
datum line (A) or to the flight line (A). Since the
rocket turns from the launcher line to the effec-
tive launcher line through the angle fa, the tra-
Jectory drop to be considered is y, the angle
tetween the effective launcher line and the sight
line. See figure 115.

It is then clear that
(74) A= — (¢ + fa)

or, in terms of the lead of the flight line over
the sight iine,
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(16) A=Ada=—y+dA—f)a.

The above formulas are expressions for the
sighting angle, except for the parallax correc-
tion which arises because the sighting system is
invariably mounted in the airplane at some dis-
tance, d, above the launchers. This correction
may be approximated by d/r and is added to the
right-hand side of equations (7.4) and (7.5).
Since this parallax correction can be superim-
posed it will not be carried along in future
mathematical expressions.

Let us again emphasize that y and f depend
upon the rocket type and the launching condi-
tions only and, therefore, tables of their values
may be used for all aircraft. On the other hand,
« and d depend upon the aircraft type and the
manner of installation of the launchers and,
therefore, must be determined separately for
each kind of aircraft and installation.

The existence of the sighting angle gives rise
to an angular rate of the sight line during a
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tracking period. This angular rate may be used
10 oDUain the reguired lead whnich inust be com-
puted by any instrument which measures the
angular rate. Consequently, we need a relation-
ship between the angular rate of the sight line
and the lead angle.

Let us refer to figure 116 and ignore any
changes in the angle of attack, a, during the
time under consideration. The airplane is con-

idered at two positions P(t,) and P,(t, 4+ Al).
The iaw of sines applied to APP,T yields

|sin (oat) |
(1.6) =
Vsat

|sin Aj

r(t, + at)

Since both oAt and A are small, we may use the
angle approximation to the sine of the angle
so that

|oat] IAl |o}
.7 = or
VAt r(t, 4 At) Ve
_ [Al
T r(t, 4+ At

Since At is small, a further approximation may
be used on the range, so that r(t, + at) = r(¢,)
= r. Let us now consider the signs and direc-
tions of the angles as given in figure 116 so
that we may remove the absolute value signs
in equation (7.7). According to our convention,
o is positive and A is negative. The motion

described is such that ¢ increases as t inéreases, -

therefore ¢ is positive. Equation (7.7) may then
be written in the following form

0 Vs

A= —

r r

(7.8) (A4 a).

g = -

This equation gives the rate of rotation of
the sight line that is required to keep it on the
target and to provide the proper gravity drop.

B. Target Moving Along the Firing Range

This problem is solved by resolving it
into two parts and superimposing their solu-
tions. The first part is the problem of the

988995 O - 52 - 12

stationary target discussed above from which
we gct all the necessary information as far as
the gravity drop is concerned. In the second
part, we assume the airplane to be stationary
and the rocket path to be a straight line. We
are then interested in expressions for the kine-
matic lead required by the motion of the target
and for the rate of rotation of the sight line
necessary to produce this lead. We introduce
Ax to express the kinematic lead and give it
direction as shown in figure 117, where we have
pictured a situation with the target moving
away from the airplane at a speed V. Let ¢, be
the time of flight of the rocket over the path
r(t, + ¢t;). From the law of sines we have

|sin Ax| 8in o
(7.9) =

Vg-t/ T

Since Ay is small, we use the approximation

\ €37

(7.10)  |Ax| = [sin Ag| = sin o .

L

Again we use the approximation r, = r and the
fact that the times of flight over the present
and future ranges are very nearly equal. (Re-
member that the target is a ground target and
is, therefore, moving relatively slowly.} If we
let V be the average velocity of the rocket over
the future range we have

L
711) V=——
. t,

and the magnitude of the desired kinematic lead
at any instant of firing is given by

Vr

(1.12) A4 = sin o.

Since Ax and ¢ are oppositely directed angles as
shown in figure 117, we have

Vr
(7.13) Ay = — ——— sine.

v
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T (to) T (to+ty)

Figure 117. — Target Moving in Range

By superposition we can now express the total
lead by :

(1.14) A= Agr = Ay
or in terms of the flight line over the sight line

(T15) A=dsr *=Ar=—y¢+ (1 —=f)ax i,

where ;7 andAgr are the leads for stationary
targets; the plus sign holds when the target is
moving away from the airplane and the minus
sign holds when the target is moving toward
the airplane.

The problem of proper tracking to give this
lead requires an expression for o, the rate of
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rotation of the sight line. Consider the problem
over a short increment of time, A¢, during whic]
both the airplane and the target are in motiori |

Let us refer to figure 118.

Apply the law of sines to AT, T,T* to give

. !oj 2 VcAt
(7.16) =
|sin A| sin (180° — o)
or,
Vsat 'sin A|
(7-17) od 3 =
sin o

s S e S e B e
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Figure 118. — Kinematic Lead -— Stationary Target

Apply the law of sines to AP, T,T. to give

T.T. r(t, + At)

(7.18) =
8in (¢At) sine
or,
. sino
(7.19) oat=TT. ,
T

since r(t, 4 at) = r and sin oAt = oAt .

Ve ag

\1)'}\
AT‘
Now, T.T,. =TT, — T.T, = T.T. — V:at, and

using sin A = A, we may write

) sino
(7.20) oat= (T, T, — Vat)
r
sine r Veatja|
p— — VrAt
r sin e
or,
. Vo Ve
(7.21) o= |A] — sino.

r r
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T(to)

Vit

T(to +tg)

Figure 119. — Azimuth Target Mction

To remove the absolute value sign from A we
note that for the situation pictured ¢ > O and,
since A < O, it is necessary to have a negative
sign for the first term. Further, making use of

(7.13), we have o in terms of A and A. Thus,

. \£ Vr
(122) o= — —\A———3sine
r r
Ve 1 4
= ,\+ A[.
r r

If the target is moving toward the airplane,
then o is increasing more rapidly and the com-
ponent of ¢ due to target motion has the oppo-
site sign from that given in equation (7.22).

C. Azimuth Target Motion

Azimuth target motion is a correction applied
to the sighting problem. The amount of this
correction is obtained from the formula

Vit,

(7.23) tan A, —

r
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which is easily obtained by considering figure
119.

By using an approximation for the tangent, this
expression usually takes the form

Vr
(7.24)

AA pmg

7.7 Determination of Sighting Tables

Sighting settings are determined for aircraft-
launched rockets by firing enough rounds under
a number of specified controlled conditions and
from these data sight settings for ali other
desired firing conditions are extrapolated or
interpolated by theoretical methods. The num-
ber of conditions needed for the computation of
reliable sighting tables depends upon how com-
pletely the ballistics for the particular rocket,
aircraft, and launcher are known. Usually, a
large number of rounds have to be fired under
many conditions.

The usual procedure is first to determine the
launching factor and trajectory drop for the
particular type of ammunition. The parallax
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factor can be introduced by direct measurement
in the aircraft. The problem then is to determine
the ‘“effective angle of attack” for the firing
condition, This is accomplished by having an
accurately boresighted airplane fire a given
number of rounds of one type of ammunition at
known initial release conditions, making succes-
sive passes in opposite directions to cancel out
wind effects. An arbitrarily chosen sight setting
is used. The range data are then reduced to a
standard set of firing conditions and the cor-
rected sight setting, which would bring the
mean point of impact on the target, is estab-
lished.

Thus, everything in equation (7.4) is known
except the angle of attack «, and thus the effec-
tive angle of attack is determined. Having estab-
lished the effective angle of attack, sighting

tables of the lead angle can then be computed.
It has been found that the effective angle of
attack can be computed from the formula

CWcoss
Vo ?

[}
where C and K are constants determined from
firings. Thus, C and K are tabulated in sighting
tables for the particular aircraft.

The above discussion conveniently pertained
to post launchers. In the case of drop launchers,
another variable, namely the time of drop, must
be determined. This is again accomplished by
firing enough rounds to establish the correct
sight settings for a number of conditions.

A typical sight setting table is shown in
table 7.2.

Table 7.2

Typical Sight Setting Table

Type of Rocket
30° Dive

Sight Setting (Degrees)

Propellant Temperature (F)

Slant
Range

\-] o ©
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7.8 Basic Principles of a Rocket Sight

In the forward firing of any projectile, the
aircraft must have the proper direction of
motion at the instant of firing. A “sight” may
be regarded as a device which insures this cor-
rect direction of motion. As has already been
shown, this direction of motion may be specified
in terms of the sighting angle or lead angle and
hence is a function of a number of variables
such as range, airspeed, dive angle, type of
rocket, etc. The sight then must perform the
following functions:

(1) It must measure or predict the values
that the variables will assume at the
instant of fire;

(2) From these data it must compute the
correct lead angle;

(3) It must employ some aiming device
so that the pilot can produce the re-
quired direction of motion.

Each of these functions may be performed in
a number of ways and the goal is to arrive at a
combination of these ways which not only will
give the correct lead angle but also will be easy
to mechanize. Although the correct direction of
motion of the aircraft can be attained by using
- a fixed sight, it has been demonstrated that
greater accuracy can be obtained by using a
computing sight. We shall, therefore, limit our
attention to computing sights.

A computing sight is a device which auto-
matically computes the correct lead from input
data which is continuously made available to
it. Such a device can be designed to reproduce
the tabular sight settings that have been
arrived at by calculations discussed in the last
section. Thus, a computer circuit of a sight may
be designed to provide a continuous solution to
a basic sighting equation and, by proper adjust-
ment of the computer constants to match the
equation, the computer can be made to repro-
duce the sight settings for any type of projectile.
The tabular sight settings are then used to
calibrate the sight,

The fundamental equation may take many
forms depending upon the method of mechani-
zation to be used. Thus the simple rocket sight
may be based on the equation:
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(7.26) Sight angle = trajectory drop + f
times the angle of attack; i.e., equation (7.15) ;
or it may utilize the angular rate of the sight
line and be based upon equation (7.22).

7.9 A Rocket Sight Based on Equation (7.25)

A simple rocket sight suitable for use against
stationary targets can be designed on the basis
of equation (7.25). This equation for no target
motion also is equation (7.4) or,

(1.26) — A=y + fa.

Tests on rocket ballistics indicate that the
trajectory drop, ¢, can be approximated by
(a + br) cos & where a and b are the coefficients
for a linear approximation. If, further, the sight
is based upon the measurement of the altitude
and not the range, we have

h k

T = s

(7.27) = .
sine sin (8§ ~ A —a)

If we substitute these approximations into
(7.26), we have,

bh

(7.28) -A:(a+ - )C088+fa.
sl o

The effective angle of attack is determined from
the following formula

CW cos 8
(] = e —————— —

Vo,

(7.29)

where C and K are constants determined from
firings and given for the particular aircraft in
sighting tables. Equation (7.28) will then take
the form

' hf.(v)
(7.30) —a=|fi(v) + ————)cos 8 — fK
Sin e
where
fCW
i(v) =a 4~ ————and f,(v) =b.
Gy
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A further simplification is obtained from the

fact that

sin ¢

sin (8 — [A + «])
sin 8§ cos(A + a)—cosdsin(A+ a)

and since A 4 « is small, we may approximate

sin ¢ by
(7.31) sin o — sin 5 — (A+4e)cossd
h
= —— — (A4 a)cosd.
Va

The function f,(v) is now assumed to be in-
k

versely proportional to Vg; i.e., f2(v) = —, so

)

that the final form of equation (7.26) is then

(7.32) —a=

hk
[fl(v) + -
h—Ve(A4a) cosd

] cos § — Kf.

The mechanization of this equation is accom-
plished by a voltage computer in which the
various parameters are represented by variable
electrical potentials. The necessary operations
of addition, subtraction, multiplication, and
division are performed by suitably connected
potentiometers. A simplified diagram showing
the principle of this computing circuit is illus-
trated in figure 120.
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7.0 A Rate Gyro Rocket Sight
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Another type of rocket sight utilizes the rate
of rotation of the sight line which may be mea-
sured by a gyroscope (gyro). If the basic
mechanization of the gunsight described in
chapter & is adopted for rocketry, then, as
explained there, the precession rate of the gyro
and the coupling factor or sight parameter, a,
will be employed for solving physically a linear
differential equation of the first order in the
lead, similar to equation (4.23) for gunnery.

To initiate the discussion that will finally lead
to a differential equation of the type just men-
tioned, let us assume that the rocket firing
aircraft is traching a ground target, all motion
being in a vertical plane. Let us further assume
that the rocket sight, basically similar to the
gunsight of chapter 5, performs physically in
its operation in accordance with the geometry
of figure 121. With the launcher line and bore-
sight datum line taken to be coincident for con-
venijence, the essentially new feature to be noted
nere is the initial angle B. by which the gyro
axis is offset from its geometric center or, since
normally the latter direction and the B.S.D.L
are separated by an angle 8, the initial angle
B =8, + B. between gyro axis and launcher
line. Thus, if initially the line of sight and gyre
axis coincide, the sight reticle will be depressed
below the B.S.D.L. by the angle 8. In order to
fly with the depressed reticle on the target, the
pilot must keep pushing the aircraft into a dive
of increasing steepness. This downward curva-
ture of the flight path, and consequent rotation
of the sight unit with the gyro loosely con-
strained, causes the reticle to drift up from the
offset position, thus reducing the lead.

Figure 121 shows the situation with gyro axis
and sight line undergoing rotation and also
shows where the sight line would be if there
were no rotation to influence the gyro.

The new angles which enter the problem are
defined as follows:

o, = sight line angle under no rotation:

= angle from the reference line to the
magnetic center«line of the gyro;

n = angle from the reference line to the
gyro axis;

{ = angle from the reference line to the
gyro geometric centerline;

B, = angle from the B.S.D.L. to the gyro
geometric centerline; a constant
offset;

8. = angle from the gyro geometric center-
line to the sight line under no ro-
tation;

B =B+ B

The precession rate of the gyro is propor-
tional to the angle between the actual magnetic
field center and the gyro axis so that we may
write

(133) 9 =K ({—1)
where K is a positive constant.

A discussion similar to the one in section 4.7
shows that the coupling factor, a, achieved by
an optical linkage satisfies the relationship.

7 — ¢l

1—a

(7.34) |o—Q] =

Furthermore, it is clear from figure 121 that

(7.35) Jo—{|=]A4B]=—(A+8)

so that the coupling equation (7.34) states
7—{¢

l—a

(736) —(A+8) =

Differentiation of this equation yields

n—2¢

l—a

(1.37)

— A=

since B, is a constant.
If we now employ equation (7.33), we have
(738) —(1—a)A==K(E—19g) —¢.
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Figure 121 clearly shows that g; =¢, — ¢, 80

that in the zero position of the coupling equa-

tion
(789) ¢—{¢{=(1—a) (6, —¢) = (1 —a) B:.
From equation (7.36) we have

(140) p=—(1—a) (A+8) +<.
If we combine (7.39) and (7.40), we obtain
(141) t—n=1—-a) B+ (1—a) (A+8)

=1—-a)(A+6+8)
=1—-a)(A+8).

Equation (7.38) then takes the form
(742) —(1—a)A=KQ—a)[a48]—¢.

We now define

1
(743) KQ1—a) =—
U

where u is the sensitivity of the gyro. Further-
more,

(744) (=oF+A+5
so that
(7145) f=o+4A

and equation (7.42) becomes

. 1 -1 . .
(746) (1—a)A+—A=——B+ec+A
u u
or
. 1 . 1
(147) —aA4+—A=0c——8.
u® U

Equation (7.47) is the differential equation
which a rate gyro rocket sight solves. The quan-
tity o is obtained from (7.21) in terms of the
inputs to the system. The sighting system may
be calibrated for a few constant values of 8 or
a variable g may be introduced into the system.
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7.11 General Theory of Rocket Tossing

The technique for rocket tossing is similar to
that for bombs (see chapter 6). Rocket tossing
differs from bomb tossing in that the rocket has
a propellant which causes its trajectory to differ
from that of bombs. The geometry of rocket
tossing may be decomposed into three parts, see
figure 122) :

(1) The pull-up period, arc OP.
(2) The delay period, arc PD.

(8) The period after the ignition of the
propellant, arc DT.

The forces acting on the aircraft during the
pull-up period are the same as those which we
discussed in the case of bomb tossing. During
the delay period, the rocket is acted upon only
by the force of gravity, and if we assume that
the rocket is released so that its direction of
motion is that of the line of flight of the airplane
at release, its coordinates may be obtained in
the same manner as those for the falling bomb.
The deviation of rocket tossing from bomb
tossing then is in the behavior of the rocket
during the third period. Thus, the path ot the
rocket may be described completely by consider-
ing only two parts; namely, the part which is
the same as the bomb (path from O to D) and
the rocket trajectory from D to T. It also is
assumed that the rocket does not yaw.

We shall consider the rocket tossing problem
under the same conditions that we considered
the tossing of bombs. That is, the rocket carry-
ing airplane flies a straight line collision course
at a constant velocity, V,, against a stationary
target. The pull-up from this collision course
is begun at the point O ; the rocket is released at
the point P(x., y,) and is ignited at the point
D(z4, y;). The time delay between release and
ignition is denoted by t; and if there is no time
delay, it i3 only necessary to set t{; = O in the
following equations.

The equations of motion of the rocket over
the path from O to D are the same as those for
the bomb. See equations (6.48), (6.45) and
(6.46). Let us rewrite equations (6.48) at the
end of the delay tlme, t,,
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l Figure 122. — Rocket Tossing (Greatly Exaggerated)
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.z",; = .{', -+ gt,8in §

(7.48) Yi=Y,— gt coB §

Ty =%, + :;:,t., +1gts8in §
yd =Y. + I}rtd —‘-}gtd? co8 5 .

Let us recall a few definitions and clearly
focus our notation. Refer again to figure 122.

(z,y¥) The coordinate system which has
the zx-axis along the collision
course OT and the origin at the
point of initiation of pull-up, O.

(x,, y.) Coordinates of the rocket at release
time,

{x4, ya) Coordinates of the rocket at point

of ignition.

t, The release time.

t. The closing time.

L4 The delay time.

7, The slant range of the rocket from
the ignition point to the target,
DT.

b The flight line dive angle before
pull-up.

4 The pull-up angle at any instant, ¢.

8, The pull-up angle at release.

04 The angle the tangent to the path
of the rocket at D makes with
the x-axis.

v The angle between the rocket slant
range and the ccllision course.

¢ The trajectory drop of the rocket.

84 The dive angle of the tangent line

to the path of the rocket at D.
Since the tangent line is actually
the effective launcher line at D,
the angle &; = y + fa; see figure
121. From figure 122 it also is
easily seen that 8, =8 — 4..
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The path of the rocket from D to T is defined
by the trajectery ¢ . A study of trajectory drop
tables for rockets currently in use has shown
that it can be fitted with an empirical formula
of the type : T T

c®(T)

T] va (84)

a, b, and ¢ are empirical constants for a
particular type of rocket;

-Va/b

(749) ¢y = [ar.e +

where

&(T) is an empirically determined qua-
dratic function of the propellant temperature T ;

vr (8,) is an empirical function which
depends essentially upon the dive angle 8, and
thus is the same for all rockets. This function
was originally defined graphically; however, a
table of values has been calculated and it also
has been fitted by expressions involving trigo-
nometric functions.

The rocket tossing problem can now be formu-
lated by a close study of figure 122, This study
reveals that a necessary and sufficient condition
for the rocket to hit the target is that the fol-
lowing angular relation must be satisfied:

(1.50) ¢ =+ 6.

The problem then reduces to one of finding
expressions for these angles which when sub-
stituted into equation (7.50) will permit that
equation to yield a solution for the correct pull-
up time.

It is easily seen by referring to figure 122 that
Ya
O_T — X4

and upon the substitution of the values for z,
and y, from equation (7.48) and OT =t.V, we
obtain

(7.51) tanv=

Y.+ l.ht.t — Jgtsfcos s

(7.52) tanv =

t.Vo — x, — 2.t — gt sin 8
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sary and we shall turn our attention to the
approximations which, although quite numer-
ous, nevertheless, has resulted in an equation
that, when mechanized, has given good results
in field tests,

7.12 A Specialized Equation for Pull-up Time
in Rocket Tossing

Due to the fact that the pull-up angle is small
and the rocket trajectories which are considered
in rocket tossing are rather flat, the following

_ _Figure 123. — Velocity Diagram at (v}
I approximations are considered to be acceptable:

An expression for 6, is obtained by consider-

- . 1) Duri ull-up, the spacial accelera-
ing the velocity diagram at D as shown In (1) During p P € spacl N

tion of the airplane is in a direction perpendicu-

. O R -
[ N N M B B o e e

If we now recall from chapter 6, equations
(6.45) and (6.46), that

z,=V,co88,,

9,
Ve cos 8§
X, = de,
g M
0
(7.54)
y, = Visiné,,
0,
Vl,'2 Sin 4
Yr = dé,
g *
0

we could substitute these values into (7.52) and
(7.53) and obtain expressions involving only
the unknown 4,. The subsequent substitution of
(7.49), (7.52) and (7.53) into (7.50) would yield
the general equation which should be solved for
¢, and finally the release time ¢t,. The complexity
of this equation, hqwever, renders it imprac-
tical from the point of view of mechanization.
Consequently, further simplification is neces-

figure 123. lar to the collision course.
Thus, (2) The slant range of the rocket is given
by -
] ',-— tycos § . -
(153) tan fy = o = & (155) r=HT = (t.— ti—t.)Ve.
3;.1 :;:r+ gtysin 8 (3) The angle 4, is approximated by its

tangent.

(4) The angle v is approximated by its
tangent.

It is necessary to make one further assump-
tion which is to be placed on the spacial accelera-
tion of the airplane during pull-up. There exists
two possibilities for this choice. One of these
assumes, as was done in toss bombing, that
there exists a suitable mean value K of K dur-
ing the pull-up. This assumption resuits in a
quadratic equation for the pull-up time.* How-
ever, studies of rocket tossing have shown that
the rocket is usually released while the spacial
acceleration is increasing so that the second
choice is to assume that the spacial acceleration
is proportional-to some power of t ; that is,

y=kott or K=cosa+kt.

In particular, the acceleration can be approxi-
mated by a linear expression so that we shall
develop the case for which r =1 or

* The reader can easily verify this by following the
procedure which we shall present for the second choice.
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(1.66) y = kgt,
where X is a censtant of proportionality.

In view of these assumptions, the velocity
components at release are given by

(ér= VG’

(7.67) ! i
0

and the coordinates at release are given by

Ty = Vgtf ’
(7.58)
¥y, = tkgt,®.

If we substitute these values into equations
(7.52) and (7.53) and use approximations (3)
and (4) above, we obtain

(7.59) v=tanv
Ykgt,® + tkgt,2 t; — 3gts? cos §
- tVe — Vat, —Vots — gt 8in s
and
. kgt,* — gtyco8 8
(7.60) 6;,—=tan¢, =

Ve + gts sin §

Let us rewrite equation (7.49) in the form

1
(761) ¢y = V—- [3g(te — ta — L) As + c®] ¢i

G

where
2].762 -Vo/b
(762) A,= ae ’
g
® = ®(T) and ¢z = ¢ (82)
and

7, has been replaced by its approximation

2).
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Upon substitution of (7.69), (7.60) and (7.61)
into equation (7.50), we have

g 1 2co
(763) - [Az (tc - td - tr) + }'PR
2V g

3g [3kt. + ktat,> — t.2 cos 5]
[Ve(t.—t, — t;) — 3gtss8in 8]

3g [kt,* — 2t cos 5]
[Ve -+ gts 8in §)

To simplify this equation and ease the notation,

2V,
first multiply by —— and let .
g
2¢
¢, =gt;8in8/Voand o, = — P
g

thus, we obtain
[(te—tai—t)A;, + &) e
3kt + Kktat,? — ts2 cos §
te—t, — (14 3c)te

kt,* — 2¢;co8 8
14¢

After clearing the fractions and combining
terms, we get a cubic equation in'¢,

(7.64) $(2 — c) kt: — Bit,* — Bit, +B,=0

where
Bz - k(tc + icxtd) - (1 + cl)Ale’R

B, =2t;c0o88 + (1 4+ ¢,)yr .
[D: + 24,(t: — ta — 1cita) ]

B.= (1 +c)ye [te ~ (14 3c) ]
[(tc—ta) Az 4 B;] 4 224t cos § — t5c088

p———
L——-—d

f—-

-
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P(x,, ¥,

Figure 124. — Rocket Tossing with No Time Delay ¥

The solution of this cubic equation will then
yield the release time ¢,.

The exact solution of this cubic equation is
difficult to express and, more to the point for
our consideration, is difficult to mechanize.
Consequently, various approximate solutions

have been derived. We shall not concern our-
selves with these approximations since that
would entail a study of the relative magnitudes
of the constants involved. Suffice it to say that
such approximations are arrived at by extensive
study of experimental data obtained from
firings.
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7.13 Rocket Tossing with no Time Delay

The special case of rocket tossing where there
is no time delay is of interest because one of the
first rocket tossing directors was fashioned
after the toss bombing director. Furthermore,
it is possible to design a rocket tossing director
by first ignoring the time delay and also the
temperature variations of the propellant, and
then to correct for these effects by proper
changes in the mechanism. We shall, therefore,
develop the equation which results when these
two assumptions are applied. Thus, if we delete
those terms in equation (7.64) which contain
t; and &,, this equation reduces to
(7-65) &ktr’ - (ktc - ﬁl’RAa)trz - 2¢£A2tr

+ 4’3.43 c’ = O N

The solution of this equation would then yield
the release time t,. We shall, however, obtain
the equation in a different form. We note that
64 now becomes the pull-up angle 6, (see figure
124) which is given by

t,

[(K—-coss) dt ;

0

[See equations (6.42) and (6.44)].
Thus, we now have

[3g(t: — ) A,) ¥a

Y.
VG (tc - tr)

(7.66) 4, =

14

)=
=

[

(7.67)
t- t

Equation (7.50) then takes the form

(7.68) te —t,] =
4]
t,
g f (K — cos 8)dt
Ve
0
&, t
7 f f (K — cos 8) dtdt.
Vo(tc—tr) 0 0 °
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v /[(K—coss) drdt.
VG(tc—tr) 0 o

which, after multiplying through by
Va(t. — t,)/g, may be written

(7-69) %*BAl(tc —t) =
t,

(tc — tr)f (K — cos 8)di

0
t, t
+[f(K—cosa)dt’dt.
o 0

If we now apply the assumption that
K — cos 8§ = &t we have

i,
[(K — co8 8)dt = {kt,?

0
and

i,
o o

and (7.69) becomes

t t,
(K — cos 8)dt'dt = f ktrdt = tkt,®

(7]

(71.70)  3ypA. (L2 —2tt. + t,2) =
i
tc[ (K — cos 8)dt — ikt,” + tht,? I
o
or, dividing through by ¢., I
(7.71)  3yeAatc + ByrAst 't = yrdat,
t,
— ikt t + / (K — cosd) dt. l
[
If we use I

1
t = —— Asfstc
k

as a first order approximation to the solution of
(7.65), equation (7.71) takes the form

1

(71.72)  dypdstc + ¥a'd? =
@ |
1

(yed: — 34x0:)t + [ (K — cos 8)dt. '
0
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t,
Since ¢, = [ dt, we rewrite to obtain
7 0
t, .
(7.73)[ (K — cos & + §yed,)dt =
0

1

2k
The term }kye'A,* would not have occurred if
we had replaced KT by OT in the formula for v.
If such an approximation is acceptable, equa-
tion (7.73) reduces to

Al + vrtAgt,

t,
2
(7-74) T/’ (K — C08 § + ﬁ‘\l/gAg)dt = ¢/gtc .
0

Equation (7.74) is easy to mechanize since the

electrical circuit can be made to solve
t,

2 at
(7.76) f = ¢, L
A, R(t)
]

where R (t) is a resistor whose value is deter-
mined by the integrand of (7.74).

7.14 Spin-Stabilized Aircraft Rockets

Since fin-stabilized rockets are suitable only
for forward firing from aircraft and because
their direction of travel is so dependent upon
the direction of motion of the aircraft and the
effective angle of attack, much thought has been
given to the problem of spin-stabilized rockets.
Such rockets are often called spinners. The
advantages of spinners are numerous. Theoreti-
cally, they may be fired in any direction and
thus may be used in air-to-air combat as well
as air-to-ground firings. They are less sensitive
to changes in angle of attack. They are shorter
and thus are adaptable to being released by
automatic launchers installed in many parts of
the aircraft. Their aeroballistics thus become
similar to the ballistics of spinning shells. They
differ from spinning shells in that they do not
have their final spin nor their final velocity when
released from the launcher since most spinners
obtain their spin as the propellant burns.

088995 O - 52 - 13

The stability of spinning rockets is a major
problem both in the design and the use of
spinners. When a spinning rocket is fired from
a moving aircraft, it is acted upon by large
aerodynamic forces as soon as it is released.
Any slight yaw which may be produced by static
or dynamic unbalance, cross currents of air, or
gravity tip-off, transforms these forces into an
overturning moment as was explained in chap-
ter 1. Now the gyroscopic action of the spin
tends to turn the rocket about an axis at right
angles to that about which the moment is acting,
and if the spin is toc weak the yaw will increase
and, in turn, the overturning moment increases
and the rocket may become unstable. The action
of the overturning moment causes the rocket to
travel in a spiral during its initial period of
motion. The phase and amplitude of this spiral
at the end of burning determine the subseguent
direction of flight. This spiral motion tends to
average out the cross thrust due to initial vaw;
however, the amplitude and period must be
made as small as possible.

It took much experimentation to develop spin-
stabilized rockets, but successful ones have been
designed and tested. The theoretical behavior
and analysis follows that of spinning shells.

7.15 Air-to-Air Rocketry

The entire discussion of this chapter has been
limited to air-to-ground rocketry. The air-to-air
problem should probably be compared with gun-
nery rather than bombing. Since rockets are
slower and have a larger trajectory drop than
bullets, the problem of aiming is far more diffi-
cult. However, the innovation of the spin-
stabilized rocket has led to considerable study
in attempting air-to-air combat with rockets.

The mathematical theory is similar to that
for gunnery. The only changes in the theory are
those arising from -the differing ballistics of
rockets and bullets and the consequent redesign
of sighting systems. The large gravity drop and
the large target speed results in very large lead
angles. This in turn limits the combat tactics
of the attacking aircraft. An attack suitable for
a rocket salvo in air-to-air combat is that of a
collision or interceptor course which was con-
sidered briefly in chapter 3.
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TERMS AND SYMBOLS

GREEK ALPHABET

Letters Names Letters Names Letters Names
A a Alpha I ¢ Iota P P Rho
B B | Beta K x Kappa z o Sigma
r Y ‘Gamma A A Lambda T T Tau
A 3 Delta M B Mu T v Upsilon
;-.3 e Epsilon N v Nu [ ¢ Phi
z ' Zeta E ¢ Xi X X Chi
H ) Eta 0] o Omicron ¥ v Psi
0 ] Theta o x Pi Q © Omega
SYMBOLS
=, is equal to; n > «, n approaching infinity;
s , is not equal to; V7, square root of n;
= , is aproximately equal to; Z ABC, angle with vertex at B;
< , is less than; (V,u), angle from V to u;
> , is greater than; AABC, triangle ABC; .
<> is less than or equal to; Az, increment of z;
é , i3 greater than or equal to; ..., and 80 on;
z , derivative of z with respect to ¢; o4 , vector from O to 4;
Vr, Vsub F; A triangles;
A’ , A prime f(u) function of u.
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Chapter 8

GLOSSARY OF NOTATION

8.1 Introduction

The mathematical theory of airborne fire
control is the work of many writers. Each of
these writers has employed more or less his
own notation, a circumstance which has often
led to considerable confusion. The publication
of this book affords an opportunity to attempt
to standardize ihe notation.

The notation employed in this book con-
forms in genera! to the standard notation of
mathematical writers and insofar as is possible
agrees with that used by organizations such as
NACA, Bureau of Standards, Aberdeen Prov-
ing Grounds, universities, and with textbooks
on ballistics, vector analysis, and other mathe-
matical subjects.

A situation which has been found to be un-
avoidable is that of employing the same letter
to represent more than one concept. However,
judicious care has been taken to keep the mean-
ing of a letter or symbol the same throughout
any one chapter and thus the meaning to be
ascribed to a given symbol should be that corre-
sponding to the chapter in which it is defined.
Moreover, whenever it was possible to do so, a
given concept was represented by the same

‘symbol in _all chapters. Thus, for example, the
. Jead angle has heen denoted by A throughout;

the present range by r; future range by r,.

Care has been exercised in the use of sub-
scripts and the attempt has been made to attach
a meaning to all the subscripts. Thus the prac-
tice of using the subscript “o” to denote initial
values has been applied to the muzzle velocity,
V.. In order to eliminate cumbersome mathe-
matical notation, subscripts are employed as
sparingly as possible. '

There are some general definitions and state-
ments concerning notation which apply to the
book as a whole. These are summarized in sec-
tion 8.2. The individual symbols are defined
chapter-by-chapter in sections 8.3 through 8.9,
inclusive.

8.2 General Definitions

The following definitions are general and hold
throughout the book.

Vectors are denoted by bold face letters and
their respective magnitudes are indicated by
ordinary print of the same letter.

Example: The vector V has magnitude V.
Unit vectors are denoted by small-letters.

Example: i, j, k, e, e.

The derivative of any function with respect
to time is indicated by placing a dot above the
letter representing the function.

. dz .. d¢ .. dy
Example: 1 = —~——; § = ——} ¢y = ——
dt dt: dts

The resolution of forces, velocities, and accel-
erations into their components along coordinate
axes is accomplished by attaching to the letters
denoting the quantity subscripts employing the
letters of the axes.

Example: The components of the velocity
V along the axes z, ¥, and z are
denoted by V,, V,,and V..

The position of any object in the figures and
diagrams is represented by a letter which most
nearly describes the object.

Example: The position of a gun station is
denoted by G. The position of a
bomber aircraft is denoted by B.

In the main, Greek letters are used to denote
angles, For the complete Greek alphabet, see the
list of Terms and Symbols at the beginning of
this chapter.
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It should be pointed out that the term mil has
four definitions. The Army mil is defined to be

1
an angle equal to —— of one revolution. Thus,
6400

. 360 o
1 Army mil = 5260 degrees = 0.05625° =

0.0009817 radians.

The Navy mil is defined to be an angle equal to
tan-'.001. Thus,

1 Navy mjl = tan-.001 = 3.438 minutes of arc.
The mathematical mil is defined to be an angle

of a radian; i.e., it is a milliradian.

equal to 1
1 1000

Thus, 1 mil = 0.001 radian = 0°3'26".3.

The bombing mil values subtend the same dis-
tance on a base line, but are not equal in angular
measure. The value of an angle in bombing mils
may be found by dividing the distance on the

base line (the ground) by ﬁ of the altitude.

8.3 Definitions of Symbols for Chapter |
A  axial moment of inertia.

A, azimuth angle of the gun bore;
that is, the angle from the V,
vector to the projection of the
gun bore axis upon the hori-
zontal plane. :

A’ azimuth angle of the Siacci co-
ordinate P; i.e., the angle from
the gun station direction of
motion, V;, to the projection
of the Siacci coordinate P upon
the Lorizontal plane, P,

A(u) Siacci altitude function.
a speed of sound.

B moment of inertia about the
transverse axis.
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AN K,
b=— (Formula 1.86).
md Ky
mg
C the ballistic coefficient = ——.
ids

C. dimensionless ballistic coefficient
for type n projectile.

c= (¢, + ¢:) po * (Formula 1.69).

d‘K, d*K,
6= + (Formula 1.46).
2B 2m . -
dl
¢; = ——————— K, (Formula 1.54).
2(s,— 1)m

D drag force.
d diameter of the projectile.
E, elevation angle of the gun bore.
e the exponential symbol.
F  force acting on the projectile.

Fe, Fy, F;  components of the force F along
the z, ¥, z axes.

f subscript denoting future situ-
ation.

G gun station position.

G.(u) drag function for type n projec-
tile at zero yaw.

g acceleration of gravity.

H  point vertically above projactile
at any time ¢ .

I(u) Siacci inclination function.
1+ form factor for a projectile.
{7, 7, k) auxiliary coordinate system.
1 8 — %
K=—_K;§5;:
2C,¢ s —1
(Formula 1.71).
K, drag coefficient.
Kps yaw drag coefficient.

Ky yawing moment coefficient.
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K,
Ky
L
M
m
N

n

o
o
P
) o

pP=

Q
R
Tt
S(u)

cross wind force coefflient.
moment coefficient.

cross wind force.
overturning moment,
mass.

spin of the projectile.

number of calibers for one turn
of the rifling.

origin of coordinate system.
subscript denoting initial values.
Siarci range coordinate.

projection of P upon the hori-
zontal plane,

Y1— (1/5)  (Formula1.43).
Siacci gravity drop coordinate.
retardation force.

future range of the projectile.

Siacci space function.

S,(u) = S(u,), initial value of Siacci

8

space function for which

U = Up.

stability factor.

8= V.28,/p U2 .

8

T(u)
Y
U

U

1%

Vs
v,

v

value of the stability factor near
the muzzle of a stationary gun
in air of standard density.

Siacci time function.
time of flight of the projectile.
Siacci pseudo velocity.

initial true airspeed of the pro-
jectile,

projectile velocity relative to the
air.

gun station velocity.
muzzle velocity of the projectile.

velocity of the projectile.

Ve Yy, ¥; components of the projectile
velocity in the direction of the
coordinate axes z, y, 2.

W  weight of the projectile.
w  wind velocity.

[, ¥, 2] stationary coordinate system
(See figure 2).

(2, ¥, 2) coordinates of the center of grav-
ity of the projectile at any
time ¢t.

[X,Y,Z] moving coordinate system (See
figure 1). T
Z  zenith angle of the gun bore.
8 angle of yaw.
8, initial angle of yaw.
¢ windage jump.
(6m¢)  projectile coordinates in gun-line
axes system.
{¢m¢] gun-line coordinate system.
8 angle of inclination of the tan-
gent to the trajectory,
0; initial angle of inclination of the
trajectory.
x  moment factor.
A lateral deflection.
g vertical deflection.
v angle from Vy, to u,.
== 3.14159
p relative air density, p,/p..
pa  air density.
po reference density (.07513 lbs/-
ft2).
¢ Viscosity of the air.
r angle from V; to V,.
¢ angle of orientation of the plane
of yaw from the vertical.
¢ angle between the horizontal

plane and the plane containing
Vo and Va '
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8.4 Definitions of Symbols for Chapter 2

184

A,

A

a

B,
B,
B,

b

C
G,

n .

G,

G

azimuth angle of the gun bore
axis.

azimuth angle of the sight line.

total acceleration of the ownship
with components a,, a, a;,
along ic, jG, kG .

iG — component of § .
jG — component of § .
l:G — component of § .

ballistic constant appearing in
the formula for windage jump.

air course of the gun-platform.

tangent line drawn to ¢’ at point
T.

air course of the target.
parabola tangent to C’ at point T'.

elevation angle of the sight line.

elevation angle of the gun bore
axis.

unit vector in the direction of
the sight line to the target.

unit vector along the line of in-
tersection of the plane e, kG
with the plane e, ig .

unit vector in the direction of the
gun bore axis.

decrease in the vertical accelera-

tion of the bullet due to air re-

sistance.
acceleration due to gravity.

present position of the gun-plat-
form.

position of gun-platform at start
of combat.

future position of the gun-plat-
form.

i, unit vector along the terminal
side of angle A .

i, unit vector along the terminal
. side of angle A4, .

il unit vector along the terminal
™.

side of angle A +

ic unit vector directed forward
along the longitudinal axis of ™
the ownship.

i, unit vector along the terminal '
T

side of the angle £ — —2— .

i, horizontal unit vector fixed in ' ]
space. :

J  windage jump vector.

J; unit vector directed outboard
from ownship and parallel to
the starboard wing.

i,=nXi,.

k; unit vector directed downward
along the ownship vertical.

k =n

l=q—1.

M = r“w angular momentum of the
sight line at the time of fire.

M(t) angular momentum of the sight :
line at the time ¢. l ‘

M; component of M along ig .
M, component of M along i:. .

m slope of gun-target line (co-l :
planar case) with respect to '
‘fixed axes in space. l

— inm2 in2 -1/2
— - z .
N = (1 — sin? a;8in%a,;)

n unit vector directed vertically
downward in space.

O origin of coordinate system fixed
in space.

P  Siacci range. l
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L
Z

%,

a1

Gravity drop of buiiet during iis
time of flight.

bullet slowdown factor.

>
bullet range = GT,.

>
present range to target = GT .

->
future range to target = G,T, .
present position of target.

position of target at start of
combat.

future position of target.

position of target as predicted
by a first order computer.

position of target as predicted by
& second order computer.

variable time ¢ , measured from
instantof firet = 0.

present time of flight, i.e. time
of flight of the bullet over the
present rzunige r.

time of flight of bullet from pres-
ent position of the gun to the
point of impact with the
target.

value of ¢ at time of impact.

time for bullet to traverse R in
a vacuum.

L]
initial speed of bullet with re-
spect to inertial space.

average speed of bullet over the
Siacci range.

average speed of bullet over the
future range.

velocity of gﬁn-platform.
muzzle velocity of bullet.

average projectile speed over the
present range.

velocity of target.

rYry

(xu Ih)

ag

8.

23 €3

AL

Ay
Ap

Ax
AsL
Agy

R .
ratc of gravity dron,

rectangular coordinates of the
point labeled S.

approach angle of the target
=(~rVY T) .

angle of attack = (i o %)
angle of skid (iG, €.

bank angle of ownship = angle
through which sircraft has
rolied.

gun angle-off = (iG, v.) .

initia! yaw engle of the projec-
tile.

dive angle of ownship
= 90° — (iG, n).

first and second order bias er-
rors.

angle from fixed reference line
to Vg.

angle directed from reference
line to sight line.

total lead angle = (e, e') .

azimuth component of A
= Ag - A -

ballistic lead = (V., r,) .

elevation component of A
p—d Ep -—_ E .

kinematic lead angle = (r', r).
sight lateral component of A.
sight vertical component of A .

angle directed from a horizontal
reference line to u.

angle (VG, u.) .
unit vector directed along VG .

unit vector directed along the
projection of V. upon the own-
ship vertical plane determined

by ic, kG
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%" unit vector directed along the ¢; aerodynamic constanis
projection of V. upon the own- (Formula 8.66). B
;l;i? aiimuth plant determined D drag force. ]
@76’ E elevation angle of projectile’s 1
¢y central angle subtended at the rectilinear trajectory.
center of a circular path by an : ) L
arc traversed by the gun plat- F  force notation; as a subscript it
form at time of fire. pertains to fighter aircraft.
yi valueof yattimet=1{,. (, 3, k) unit vectors.
1 - . . : 2 P
p relative air density . K — (Formula 8.65).
t  sight line angle-off = (i, r) . 14+2//
 (i,e). K, dimensionless constants
G e (Formula 8.72). } _
7y future range line angle-oft

L lift force.

= (iG, l") .
. 3 [t
¢ angle between bullet range and m  slope of line. j
the sight line = (B, &} . R radius of curvature. .
&, angular velocity of the sight co- Rp projectile air range.
ordinate system with respect »  present range.
to space.

r; future range.
@ angular velocity of the sight line

with respect to space. S wing area.

8 length of arc; dimensionless

ve component of &2, alonge . range (Formula 3.71).

oy component of &2, along i: . T  thrust force.

oz component of $B, along iz. . t variable time.

[ 1 [ o ' [ I C

t; time of flight of projectile.
8.5 Definitions of Symbols for Chapter 3 t*  dimensionless time

A azimuth angle of projectile’s rec- * (Formula 3.71).

tilinear trajectory. us dimensionless bomber velocity

AP aspect ratio, b*/S. (Formula 3.71).
a, -normal acceleration. Vg velocity of bomber aircraft. L
B subscript pertaining to bomber V. velocity of fighter aircraft.
aircraft. o
u average speed of projectile over i
b wing span of aircraft. .
Co  drag coefficient. Vi indicated air speed. f

Cv  lift coefficient. v  dimensionless velocity
c= V,/ V,. (Formula 38.71). ,

=V, / «. W  weight of aircraft.
186 '
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(xlo Vs Za)
(Zp, Yr, 2¢)
«

@o

Co

A
Ay Aey As
P

T

coordinates of bomber aircraft.
coordinates of fighter aircraft.
angle of attack of gun bore line.

angle from zero lift line to thrust
line.

bank angle,

sngle from refersace iine to
flight e,

angle of deviation.
propeller efficiency.

angle from reference line to
sight line.

angle from V, to sight line,
see Formula (3.68).
relative air density.

angle-off of the sight line.

8.6 Definitions of Symbols for Chapter 4

a sight parameter.

A, B constants in the aided tracking
formula.

C amplification ratic = amplitude
of sight oscillation/amplitude
of gun oscillation.

d distance from reticle to gyro
mirror. _

e base of natural logarithms
= 2.71828 ...

f focal length of collimating lens.

f(t) arbitrary input function of the
time.
f.(t), fo(t)  “signal” and “noise” components
of f(¢) .
G  present position of gun platform.
M
h=1+4 3¢ y ), a dimensionless

cuantity.

k

coefficient in linear differential
equation, kz 4+ = = f(1).

k,=1/(1-a)u.

M

t,
Ve

Vr
V.

Zo

T,

angular momentum of line of
sight.

bullet slowdown factor.
present range {o target.
future range to target.
future position of target.

position of target at time of fire.

time variable measured from an
arbitrary origin.

time of flight of projectile.
arbitrary origin of time ¢.

speed of gun-platform at time of
fire.

speed of target at time of fire.

average projectile speed over
present range,

average projectile speed over
future range.

projectile muzzle speed.

output functions of the time cor-
responding to the input f(¢) .

value of z at time ¢, .

output function of the time cor-
responding to the input f, (%) .

output function of the time cor-
responding to the input f.(¢t) .

approach angle of target.
gun angle-off = (VG, Vo) .

*® sinusoidal oscillatory motion of
the gun.
steady state value of y.

time lag corresponding to phase
difference of gun and sight
oscillations.
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y  angle between reference line and
gvro axis.

n angle through which gunner’s
handgrips have turned from a
neutral position.

0 angular coordinate of tracking
' device.

A total iead angle.

Ay Dballistic lead angle.

Ay kinematic lead angie.
»=3.14159 . ..

o angle between reference line and
and sight line.

@y 8leady state value of o.
o value of o corresponding to y,.
r sight line angle-off.

o angular rate of the line of sight.

8.7 Definitions of Symbols for Chapter 5

A,B,C moments of inertia of a solid of
revolution with respect to the
principal axes of inertia, z,
Y, z.

a sight parameter.

fixed mirror in the sight nead

optical system,
¢, €, ¢ proportionality constants,

d distance from reticle to gyro
mirror.

electro-motive force.

an arbitrary force.

focal length of collimating lens.
viewing glass on the sight head.
magnetic field strength,

moment of momentum of a force
system about the point O.

LM Q- Wby

I. moment of inertia about the
z-axis.

188

i

current strength.

i, eddy current strength.
k unit vector along the z-axis.
K, constant of proportionality.

l length of torque axis.

L  arbitrary torque vector.

m  mass.

M., moment of mass m about point
0.

N center of spinning dome, located
on its surface.

O  any fixed point.

P a particle.

p  perpendiculardistance from point
O to line of action of force F.

r position vector of particle P rela-
tive to O.

R electrical resistance,

R reaction force at point of gyro
support.

torque vector, WI.

% gyro sensitivity,

V  velocity of particle P relative to
0.

V: target velocity.
v linear speed of a point on the
spinning dume.
W  weight of gyro rotor.
[z,¥,2] principal axes of inertia of a solid
of revolution.

« angle by which the line from the
reticle to the gyro mirror is
offset from the gun bore axis.
Also used elsewhere as a vari-
able angle and as angular ac-
celeration.

o= Sk

y gun angle-off.
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& angle between gryo spin axis and
gun bore axis.

A  error operator.

v angle between reference line and
gyro axis.

? angle of deflection of gyre zpin
Az i avdmsath,

aximith component of Ag.

Ag  elevation component of Ag.

Ax  kinematic lead angle.
»=3.14169 ...
p distance of mass m from z-axis.

o angle between reference line and
line of sight.

B

» 4
axis in elevation.

o angular rate of the line of sight.
W= 4 w.

components of angular velocity
of w» along =z, y, z-axes.

Wy Wyy W

4

o angular velocity of precession.

&2 — spin angular velocity of gyro
rotor.

8.8 Definitions of Symbols for Chapter &

A. AND B. LEVEL BOMBING

B, position of bomb in still air at an
arbitrary time ¢ since release.

B, position of bomb in vacuo at an
arbitrary time ¢ since release.

d diameter of bomb.

F  drag force due to air resistance
acting on bomb.

f(v) - drag force acting on bomb; func-
tion of bomb velocity only.

g acceleration due to gravity.

altitude of plane above target
level.

o

angle of deflection of gyro spin

A{t) difference in altitudes of points
B. and B, at time ¢.
¢  ballistic form factor of bomb.

K empirical constant = .0000316
ft. .

k constant of proportionality.

m  mass of bomb.

00’ line of flight of bomber during
time of flight of bomb in vacuo.
R range of target along the hori-
zontal.
r bomb trail.
r(t) difference in ab:cissas of points
B, and B, at time ¢.
T target.
t ai-bitrary time since release of
bomb.
t, time of flight of bomb.

V. ' closing speed betweer: plane and
target — ground speed of plane
when target is stationary.

V  true air speed of bomber.

V, indicated air speed of meber.

VT target velocity.

v velocity of bomb with respect to
the air mass.

v, terminal velocity of bomb in air.

W  weight of the bomb.

W  wind velocity.

X  horizontal coordinate of bomb.

Z  vertical coordinate of bomb.

¢ angle which tangent line to bomb
trajectory makes with the ver-
tical.

¢ drift angle.

x=23.141569 . ..

pa density of air at a given altitude.
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po  density of air at sea level.

¢ range angle of target.

C. DIVE oR GLIDE BOMBING

[Note: Letters not defined have same mean-
ing as for Level Bombing.}]
L linear aiming allowance.

V.,  vertical component of V.
Vx horizontal component of V.
X horizontal range of target.

¢ angle between flight line and the

1. Py |
uvLLuILLal.

A lead angle of flight line over the
sight line to the target.

D. Toss BOMBING

190

[Note: Letters not defined have the same
meaning as for Level and Dive
Bombing. Letters with zero sub-
script indicate values of letters at
the time of pull-out from a straight
dive.]

-
a retarding acceleration on bomb
due to air resistance.

B proportionality constant.
f=(h,— h).f.
hy, k.

altitudes of points N and O, re-
spectively.

K number of gees acting on air-
craft due to both curvature
and gravity at any point on
the pull-up path.

R time average of K over the pull-
up arc OP,

N  point at which straight-line dive
at target is begun.

C  point of pull-out from a straight
dive.

P point of bomb release.

R radius of curvature of pull-up
path.

8 variable distance measured along
the pull-up path, beginning at
0.

t time taken to fly the distance s,
a variable time since initiation
of pull-up,

t. closing time = time for aircraft
to cover distance OT .

tvo time for aircraft to cover dis-
tance NO.

t,=t, + t, = time when bomb strikes
the target measured from start
of puil-up.

t, pull-up time measured from point
of pull-out to point of bomb

release,

%,  horizontal and vertical compo-
nents of bomb velocity since
release.

U., W, horizontal and vertical compo-

nents of V at P.

V  true air speed of plane along the
pull-up path.

. «,y4 coordinate axes, along and per-
pendicular to the coiiision
course, respectively, with ori-
gin at O.

z,, Y, coordinates of point P.

B  a particular furlgtion of input
variables ¢, 8, p, V.

8 dive angle of the collision course
ar.

e(£) aterm which accounts for change
in trajectory due to air resis-
tance,

6 angle between z-axis and the
tangent line to pull-up path at
time ¢,
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6,

angle between z-axis and the

tangent line to the pull-up path
at P.

x = K — cos & = normal acceleration

E
e:"

&

4

?.

¢

¥y

on aircraft along its pull-up
path, in gees.

average normal acceleration over

the pull-up arc OP.

horizontal and vertical axes with

origin at P.

coordinates of T at time ¢, .
a function of 4 and 5 .

angle between the horizontal and

the tangent line io the bomb
trajectory.

mean value of ¢ over arc PT.

a function of K, 3 and 8.

8.9 Definitions of Symbols for Chapter 7

On

B.S.D.L.

E.LL.

F.L.

~.

L.L.

L

S.L.

t

normal acceleration.

boresight datum line; a refer-
ence line fixed in the airplane.

constant of proportionality.

effective launcher line; the line
of departure of rocket.

flight line: the direction of mo-
tion of the aircraft.

launching factor.

altitude of the airplane above the
target.

launcher line; altitude of launch-
ers,

present range,
future range.

sight line; line from own ship to

target.

burning time of rocket.

t
ta
¢
ty

t
Vi

VG
Va,

vl’

v'l‘
X

Z.L.L.

a

Qo

fa

B=

B,

B:

$

Y

¢

ki

[
6,

closure time.
the delay time.
time of flight of rocket.

the time the rocket stays in the
launchers.

release time of rocket.

average velocity of the rocket
over future range.

gun station velocity.

indicated airspeed of the gun
station.

final velocity of the rocket rela-
tive to the aircraft.

velocity of the target.
horizontal position of the rocket.

zero lift line; a reference line
fixed in the airplane.

angle of attack of the B.S.D.L.
angle from B.S.D.L to Z.L.L.
angle from B.S.D.L. to £.L.L.

Bi+ B:.

angle from B.S.D.L. to the gyro
geometric centerline,

angle from the gyro geometric
centerline to the sight line un-
der no rotation.

angle from the horizontal to the
B.S.D.L.

dive angle, angle from horizontal
reference line to the F.L.

angle from the reference line to
the gyro geometric centerline.

angle from the reference line to
the gyro axis.

pull-up angle at any instant ¢.

pull-up angle at release.
19§
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b4

A,
Ax

Asr.

192

the angle the tangent to the path
of the rocket at D makes with
the z-axis.

lead angle, angle from sight line
to B.S.D.L.

lead angle in azimuth plane.
kinematic lead angle.
lead angle for stationary target.

angle from the flight line to the
sight line,

angle A for stationary target.

v

e

the angle between the rocket
slant range and the collision
course.

angle from reference line to the
magnetic centerline of the
gyro.

angle from the horizontal to the
sight line.

sight line arigle under no rota-
tion.

trajectory drop; the angle from
the effective launcher line to
the sight line.
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Appendix A

~

VECTOR OPERATIONS

A.l Vector Algebra—Addition and Sub-
fraction

By a vector is meant a straight line segment
poasessing a definite length and direction. Any
physical magnitude which also involves the idea
of direction may be represented vectorially.
Thus we may cite as examples: velocity, accel-
eration, force, and torque. '

Notationally, we shali distinguish between a
vector quantity A and its corresponding scalar
value 4 by employing bold face type for the
former and ordinary type for the latter. Thus
for vector A we have A while jts scalar value
is denoted by A. Alternately, we shall employ

the notation ,TB for the vector directed from
point A to point B.

Definition 1: Vectors possessing the same
length and direction are said to be equal. Geo-
metrically speaking, this means that the vectors
in question are necessarily parallel or segments
of the same straight line.

Definition 2: The sum of two vectors Aand
B is written A 4+ B and is defined as the vector
represented by the diagonal of a parallelogram
of which A and B are adjacent sides. This is
shown in figure 125.

Since from the figure we also have B = I-J)Q,
we see immediately that an alternate way of
constructing A 4 B is to draw B from the term-
inus of A and recognize that A 4+ B is then the
vector ‘directed from the initial point of A W
the terminus of B.

Figure 125. — Veclor Parallelogram

Also, from the figure, we note that
: -

which expresses the fact that vector addition
is commutative. Thus,

A+B=B4+A.

The reader may convince himself, by drawing
an appropriate figure, that the associative law
also holds for vector addition:

(A+B)+C=A+(B+0).

The sum of any number of vectors may now be
obtained by constructing a broken line whose
component segments are the vectors in ques-
tion; the sum vector will then be directed from
the beginning to the end of the broken line.

Definition &: The negative of a vector is
defined as a vector of the same length but of

. e e > >
opposite direction. Thus — AB = BA and

>
— (—AB) = AB. To subtract the vector B
from the vector A, amounts then to forming
the sum A + (— B). In figure 125, A — B would

be given by the vector RP.

Definition 4: The product aA or Aa of a
vector A and a real number a is defined as a
vector whose length is |a| times that of A and
whose direction is the same as that of A if ¢
> O, opposite to that of Aif a < O.

Multiplication of vectors by real numbers is
commutative, associative, and distributive. This
is reflected in order by the following equations:

aA=Aa
(ab) A =a (bA)
(a-b)A=aA+DA.

The product of the sum of iwo vectors by a
number also is distributive:

a(A+B)=acA+aB.
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In summary, we may say that so far as addi-
tion, subtraction, and multiplication by real
numbers is concerned, vectors may be operated
upen formally, using the rules of ordinary
algebra.

A.2 Vecjor Algebra—Scalar and Vector
pu

FCRATAY L 4™ l

The product of one vector by another may
lead to a scalar or to a vector quantity depend-
ing upon what type of product is specified. Two
types of product are defined : the scalar or “dot”
product and the vector or “cross” prod product. For
vectors A and B, these products are denoted by
A-<Band A XB.

1. SCALAR PRODUCT

Definition 5: The scalar product A « B is
defined by

A+‘B=ABcos (A,B),

where (A, B) is the angle included between A
and B, (0° < (A, B) < 180°).

It will be noted that A - A = A2 Thus the
scalar product of a vector by itself gives the
square of its length. Also, if A is a unit vector,
iie, A = 1, then A + B will give the directed
length of the projection of B upon the line of A.
Since the defir’  expression for A « B is sym-
metric in A avu B, it follows that scalar multi-
plication of vectors is commutative:

A‘B=B-A

Using the definition for dot product, it also can
be shown that scalar multiplication is distribu-
tive with respect to addition:

A-(B+C)=A'B+A-C.

A useful formula for evaluating A « B can be
written when A and B are each referred to a
right-handed orthogonal set of unit vectors as
the basic coordinate system. Thus, if i, j, k are
unit vectors so oriented that a rotation of i into
j appears counterclockwise when viewed from
the terminus of k and if the same can be said
for rotations of j into k and k into i when viewed
from the terimini ef i and j, respectively, the
ordered triple [i, j, k] forms a right-handed
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orthogonal set. If the components of A and B
in the i, j, and k directions are denoted respec-
tively by A,, A,, A., and B,, B,, B,, then since
iri=jrj=k'k=1landi*j=i‘k=k*j=
0, we find

A-B= (Ai+ Aj+ Ak) * (Bd + B,j + B.k)
= A.,B, + A,B, + A.B,.

2. VECTOR PRODUCT

Definition 6: The vector product A X B of
two vectors A and B is a vector perpendicular
to the plane of A and B and so oriented that the
ordered triple [A,B, A X B] forms a right-
handed orthogonal set. The magnitudeof A X B
is defined by A B sin (A,B), where 0° < (A,B)
< 180°.

We note first, in the special case when A || B,
that (A, B) is 0° or 180° and hence that A X B
= 0. Thus, we may say that two non-zero
vectors are parallel if and only if their cross-
product vanishes.

From figure 125, it is immediately evident
that the magnitude of A X B is represented
geometrically by the area of the parallelogram
determined by A and B. Also, if the order of
A and B is reversed in A X B, that is to say, if
one considers the product B X A, then to pre-
serve the right - handedness of the triple [ B, A,
BXA] the direction of BXA must be opposite
to that of A X B. Thus,

AXB=—-BXxA

and we see that cross multiplication is not com-
mutative. As we shall see below, cross multipli-
cation is not associative either; that is,

(AXB) XCxAX(BXCO),

but it is distributive with respect to addition:

AX(B+C)=AXB+AXC.

With A and B referred to a right-handed
orthogonal coordinate system (i, j, k], we may
derive a formula for

A X B=(4,i+ A,j + A.k)X(B.i 4+ B,j+B.k)




lby use of the distributive law and the relations
r‘ ixﬁ:j)(_j_:ll)(kzo,
IXi=k ixXk=1 kxi=]}.
The result is
A X B= (A,B. — A,B,)i+ (A.B,— A.B,)}
+(A.B, — A,B.)k.

A more convenient form for remembering the
| $latter is

i i jk
i AXB-': AxAyAx ’
B, B, B,

the determinant being expanded by minors
according to the elements of the first row.

| 3. THE SCALAR TRIPLE PRODUCT, A X B+ (, is
1 first of ail & scalar since it is obtained by finding
the dot product of the vectors A ) B and C. One
can easily show that, when C has components
C., C,, C;, the product A X B+ C is given by the
formula

A, A A,

AXB*C=| B.B,B,

C.C,C.
Geometrically, the numerical valueof A X B+ C
71 represents the volume of the parallelopiped
having A, B, C as concurrent edges. More pre-
cisely, it represents *+ Volume according as the

. triple [A, B, C] is or is not a right-handed set.
Indeed, from figure 126, we have

AXB:C=|AXB||C|cosd

| = (area of base parallelogram)
: (= Altitude)

; = + Volume.

* Since cyclic permutation of the lettersin A X B
~ +C does not alter the paralielopiped we note that

e AXB:C=BXC+*A=CXA"*B.

~ From this we conclude that a given scaiar triple
- product is left unchanged by interchanging the
~ dot and the cross.

988995 O - 52 - 14

AxB

!

ALTITUDE

4

Figure 126. — Scalar Triple Product

4. THE VECTOR TRIPLE PRODUCT, (A X B) X Cis
a vector perpendicular to A X B and hence is
coplanar with A and B. It is easily verified that

(AXB)XC=(A‘C)B-(B-C)A,
and

AXBXC=(A-C)B—-(A-B)C.

This shows, incidentally, that cross multiplica-
tion is not associative.

Figure 127. — Vector Differentiation

A.3 Vector Calculus—The Derivative

The derivative of a variable vector A (t) with
respect to the scalar variable ¢ is defined by

. dA AA
dt At>) At

195
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Where A = A (t+ At) — A(t) is the increment

vector representing the change in A(t) occe-

sioned by a change At in t. The difference
AA

quotient ——, shown in figure 127, is then sim-
at :
1

ply the secant vector which is —-t— times as long
A

as AA. The limiting vector A(t) is then tangent
to the path traced by the terminus of A(¢) as ¢
varies.

IfA(t) =A.(t) i + A,(t) ], then the deriva-
tive with respect to the |i, j] frame of reference,
in which A, and A4, are variable components, is

A =A.(Di+ A, ].

When A (t) is interpreted as the position vector
of a moving point P and ¢t as the time, then A (¢)
and A(t) are respectively the velocity and
acceleration of P. We note also that if A(Z) is
fixed in magnitude but variable in direction,
then A(t) will be perpendicular to A(t). More-
over, A (t) will be given by the formula

Al{t) = A(8)oT

where » is the angular speed of the rotating
vector A, and T is a unit vector perpendicular
to A and advanced 90° from A in the direction
of increasing angle # (see figure 128). This
follows from

. dA dé¢ du
A(t) :-—'—:A—uzAmT,
dé dt dé

where u is a unit vector in fhe direction of A,

! [
since }%%i')l when A8 > 0, as is well known
I

from the calculus.

Figure 128. — Unit Vectcr and
its Derivation
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‘The angular velocity of vector A = Au de-
noted by «, is & vector of magnitude « = ¢ and
of direction u X T. Thus, the angular velocity
of a rotating vector is another vector perpen-
dicular to the piane in which the rotation takes
place. Hence,

(A1) w=w@XT)=uX«T =uxu.

From Formula (A.1) it is easily established,
upon taking the vector product of both sides
with u, that

(A2) U= Xu.

Formula (A.2) is equally valid in the following,
slightly more general, case:

Consider a rigid body rotating about a fixed
axis passing through the fixed point O. Then
if P is a fixed point of the rigid body not situated
on the axis of rotation, the velocity of P is
obtained by replacing u in (A.2) by the vector

(.)7’. Thus, )
d > >

where « is now the angular velocity of the rigid
body about the fixed axis. This is seen to be an
immediate consequence of (A.2) upon resolving

(-)7J into components along and perpendicular to
the axis of rotation and then differentiating.
The derivative of the component along the axis
is obviously zero while the derivative of the
component perpendicular to the axis is then
found from (A.2).

A.4 Time Derivative of a Vector Referred to
o Rotating Frame of Reference

The following theorem® in mechanics, here
assumed without proof, is fundamental to our
discussion:

THwOREM : If O is any point of a free rigid
body, the velocities of its points are the same

as if they were compounded of an instantaneous

translation V and ap instantaneous rotation &8
about an axis through @; and &2 is the same
for any choice of O.

*See “Vectorial Mechanics” by Brand; John Wiley &
Sons; p. 497.




VECTOR OPERATIONS

Unlike the motion deacribed in A.3., where
the axis of rotation was fixed, here the axis of
‘rotation passing through O varies from instant
toinstant. If P is another fixed poiqt of the rigid
Ibody different from O, then at each instant the
gvelocit:y of P relative to O is given by ¢

i d > >
¢

‘Z

Differentiating (A.4) we have

. di dj
A) =Ad+ AJ+Ak+A,—44,—
dt dt
4 dk
AT

Identifying (.)7’ in (A.3) successively with 1, j,
and k, we obtain
di dj dk
—=8Xi; —=88X); —=BXxk.
dt dt dt

A (t)

|«

Figure 129. — Time Derivation of a Vector Referred to a Rotating Frame

' In figure 129, let G-XYZ be a fixed system of
coordinate axes and O-ryz a moving system,
being rotated and translated relative to G-XYZ.
Let A(t) be a vector which is at times tc be

referred to both systems of axes. We seek a

'formula for A(t).
Let the vector A(t) in component form be

l (Ad) A()=A4Ai+ 4,4+ Ak,

Combining the above steps and simplifying, we
find

A=A+ Aj+Ak4+ B X (Ai+ A,
, + A4.k),

or,
(Ab) A=A,i+Aj+Ak+SXA.

When A(t) is fixed in magnitude, (A.5) reduces
to (A.3).
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]
Appendix B 1
CONVERSION TABLES

reason it is convenient to have conversion tables
which change military units to standard units;

B.! lairoduction

Throughout this book it has been necessary  and vice versa. Several such tables are listed in:

1

to employ military terminology and for that this appendix. ‘
' 3
Teble B.I |
L |

Tonversion Tabie — Knots to MPH to FT/SEC ]
6080 6080 "

1 knot =—— MPH =—— FT/SEC

5280 3600 |

1 knot =1.151515 MPH =1.688889 FT/SEC

KNOTS MPH | FT/SEC| KNOTS { MPH | FT/SEC | KNOTS | MPH | FT/SEC |L
200 230 338 350 403 591 500 576 814
210 242 355 360 415 608 510 587 861
220 253 372 370 126 625 520 599 g7s | L
230 265 388 380 438 642 530 610 895
240 276 405 390 9 659 540 622 912 |
250 288 422 400 461 676 530 633 g29 |t
260 299 439 410 472 692 560 645 946
270 311 156 420 184 709 570 656 963 |-
280 322 473 430 405 726 580 668 980 |
290 334 490 410 507 743 590 679 096 |-
300 345 567 450 518 760 600 691 1013 |
310 357 524 460 530 777 610 702 1030 |
320 368 510 470 541 704 620 714 1047 | ]
330 380 557 180 553 811 630 725 1064
340 392 574 490 564 828 640 737 1081

198




CONVERSION TABLES

ot

—d

[S—

L

Table B.2
Conversion Table — MPH to FT/SEC to KNOTS
5280 5280
1 MPH = FT,;SEC =—— KNOTS
3600 6080
1 MPH =1.466667 FT/SEC = 868421 KNOTS
R : P ! 1
MPH | FT/SEC | KNOTS | MPH | FT/SEC : KNOTS { MPH | FT/SEC | KNOTS |
200 293 1 174 00 | 587 | 347 600 | 880 | 521 |
210 | 308 | 182 410 601 356 610 895 | 530
220 323 1 191 420 616 365 620 909 1 338 |
230 a7 200 430 631 373 630 924 | 547
240 352 | 208 440 645 382 640 939 . 53 |
250 367 | 217 350 | 660 301 650 953 | 368 |
260 381 226 460 | 675 399 660 968 | 573
270 396 234 470 689 - 408 670 983 582
280 411 243 480 704 | 417 680 997 591
290 425 252 490 719 426 690 1012 599
300 440 261 500 733 434 700 1027 608
310 455 269 510 748 443 710 1041 617
320 469 278 520 763 452 720 1056 625
330 484 287 530 777 460 730 1071 634
340 499 295 540 792 469 740 1085 643
350 513 304 550 807 478 750 1100 651
360 528 313 560 321 486 760 1115 660
370 513 321 570 836 495 770 1129 669
380 557 330 580 851 504 780 1144 677
390 572 339 590 i 865 512 790 1159 686
Table B.3
Conversion Table — FT/SEC to MPH to KNOTS
3600 3600
1 FT/SEC =—— MPH =—— KNOTS
5280 6080
1 FT/SEC = 681818 MPH =.592105 KNOTS
FT,SEC MPH | KNOTS | FT/SEC| MPH | KNOTS | FT/SEC | MPH | KNOTS
300 205 178 600 | 409 | 355 | 900 614 533
320 218 189 620 423 367 920 627 515
340 232 201 640 436 379 940 641 557
360 245 213 660 450 391 960 655 568
380 259 225 680 464 403 980 668 580
400 273 237 700 477 414 1000 682 592
420 286 249 720 491 426 1020 695 604
440 300 261 740 505 438 1040 709 616
460 314 272 760 518 450 1060 723 - 628
480 327 284 780 522 462 1080 | 736 639
500 341 206 800 515 474 1100 750 651
520 355 308 820 559 486 1120 764 663
540 368 320 840 573 497 1140 777 675
560 382 332 860 586 500 1160 791 687
580 395 343 880 600 521 1180 805 699
199
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Table B.4
Conversion Table — DEGREES to MILS

L4
1 DEGREE -E(IOU)) MiL8 =17.453203 MILS
1

(The Fire Control Mil)

Degrees Minutes Seconds
0 0.0000 60 . 1471973 i 120 2094 . 3951 0 0.0000 0 .0000
1 17.4333 61 | 1064.6508 | 121 2111.8484 1 0.2909 1 .0048
2 34.9066 62 ! 1082.1041 ! 122 2129.3017 2 0.5818 2 .0097
3 52.3594 63 | 1009 00ia 123 2146.7550 3 0.8727 3 .0145
4 69.8132 64 | 1117.0107 124 2164.2083 4 .1636 4 .01%4
3 87.2665 65 | 1134.4640 125 2181.6616 51 4544 5 .0242
6 104.7198 66 1151.9173 126 2199.1149 6 .7453 6 .0291
7 122 .1730 67 1169.3706 127 2216.5682 7 .0362 7 .0339
P 8 139.6263 68 1186 .8239 128 2234.0214 8 .3271 8 .0388
9 157.0796 69 1204 . 2772 129 2251 4747 9 .6180 9 .0436

.9089 10 .0485
. 1998 11 .0633
.4907 i2 .0582
.7815 13 .0630
.0724 14 .0679

.3633 15 .0727
.6542 16 .0776
.6451 17 .0824
.2360 18 .0873
.5269 19 .0921

.8178 20 .0970
. 1087 21 . 1018
.3995 22 . 1067
. 6904 23 1115
9813 Pz 1164

2722 25 L1212
9631 26 1261
.8540 27 . 1309
. 1449 28 L1357
4358 29 . 1406
. 7266 30 1454
.0175 31 .1503
.3084 32 . 15561
.5993 33 .1600
.8902 34 - 1648
1811 35 . 1697
4720 36 1745

10 174.5329 70 | 1221.7305 130 2268 .9280 10
11 191.9862 71 1239.1838 131 2286.3813 11
12 209.4395 72 1256.6371 132 2303 8346 12
13 226.8928 73 | 1 1274.0604 133 2321.287% 13
14 244 .3461 74 1291.5436 134 2338.7412 14
15 261.7994 75 1308. 9969 135 2356 . 1945 15
16 279.2527 | 76 1326.4502 136 2373.6478 16
17 206 .7060 7 1343.9035 137 2391.1011 17
18 314.1593 7 1361.3568 138 2408 . 5544 i8
19 331.6126 79 1378 8101 139 2426.0077 19

20 349.0659 80 1396.2634 140 2443 .4610 20
21 366.5191 81 1413.7167 141 2460.9142 21
22 383.9724 82 1431.1700 142 2478.3675 22
23 401.4257 83 1448.6233 143 2495.8208 23
24 418.8790 84 1466 . 0766 144 | 2513.2741 24

25 | 436.3323 85 1483 .5299 145 2530.7274 25
26 453.7856 86 1500.9832 146 2548. 1807 26
27 471.2389 87 1518.4364 147 2565.6340 27
28 488.6922 88 1535.8897 148 2583.0873 28
29 506. 1455 89 1553. 3430 149 2600. 5406 29

30 323 .5988 ) 1570.7963 150 2617 .9939 30
31 541.0521 91 1588.2496 151 2635.4472 31
32 558.5054 92 1605.7029 152 2652 . 9005 32
33 575.9587 93 1623. 1562 153 2670.3538 33
34 593.4119 G4 1640.6095 154 2687 .8070 31

35 610.8652 95 1658.0628 155 2705.2603 35
36 628.3185 96 1675.51G1 156 2722.71306 36
37 645.7718 97 1692.9694 157 2740.1669 37 .7629 37 L1794
38 663 2251 o8 1710.4227 158 2757.6202 38 0538 38 . 1842
39 680.6784 99 1727 .8760 159 2775.0735 39 11.346 39 .1891
10 698.1317 100 | 1745.3293 160 2792 .5268 40 11.6355 40 1939
41 715.5850 101 1762.7823 161 2809 .9801 41 11.9264 41 .1988
42 733.0383 102 [ 1780.2358 162 2827 4334 42 12.2173 42 -2036
43 750.4916 103 | 1797.6891 163 2844 . 8867 43 12.5082 43 . 2085
44 ! 767.9449 104 ) 1815.1424 164 2862 .3400 4+ 12.7991 1+ 2133
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CONVERSION TABLES

Table 8.4 — Continuved
Conversion Table — DEGREES to MILS
1 DEGREE = ——(1000) MILS = 17 453203 MILS
180
(The Fire Ceontrol Mil)

Seconds

2182
- .2230
.2279

Minutes

13.0000 | 45
13.3809 46
13.6717 47
13.9626 48 .2327
14.2535 49 .2376

14.5444 50 2424
14.8353 51 2473
15.1262 52 .2521
15.4171 53 .2570
15.7080 54 .2618

15.9980 | 55 . 2666
16.2897 56 2715
16.5806 57 .2763
16.8715 58 | .2812
17.1624 59
17 .4533 60

Degrees

- '1832.5957 165
1850. 0490 166
1867.5023 167
18849556 168
1902. 4089 169
1919.8622 170
1937.3155 171
1954.7688 172
1972.2221 173
1989 6753 174
2007 . 1286 175
2024 .5819 176
2042.0352 177
2059 . 4885 178
2076.9418 179
2094 .3951 180

Table B.5S

2879.7933 15
2897 2466 46
2914 6999 47
2932.1531 48
29496064 49

2967 .0597 50
2084.5130 51
3001.9663 52
3019.4196 53
3036.8729 54

3054 .3262 55
3071.7795 56
3089.2328 57
3106.6861 58
3124.1394 59
3141.5927 60

45 785.3082 105
46 802.8515 106
47 820.3047 107
48 837.7580 108
49 855.2113 109

50 872.6646 110
51 890.1179 111
52 907 .5712 112
53 925.0245 113
54 942 4778 114

55 959.9311 115
56 977.3844 116
57 994 .8377 117
58 1012.2910 118
59 1028.7443 119
60 1047.1976 120

———————

Conversion Table — MILS to DEGREES

x
Decimal Values of Degrees

MESY S S S e See s eeeo

¥

1
) 1000 Mils 100 mils 10 mils mils — mil
10
1 57.2958 5.7206 .5730 .0573 L0057
2 114 .5916 11.4592 1.1459 .1146 .01135
3 171.8873 17. 1887 1.7189 L1719 L0172
4 2291831 22.9183 2.29018 .2292 .0229
5 286.4789 28 .6479 2 8648 .2865 L0286
6 343.7747 34.3775 3.4377 .3438 ¢ 0344
7 401 .0705 40.1070 4.0107 .4011 .0401
8 458.3662 45.8366 4 .5837 4584 L0438
9 515.6620 51.5662 5.7566 .5157 .0516
' Degrees, Minutes, and Seconds
1
1000 mils 100 mils 10 mils mils — mil
10
l 1 57°17'44 8" 5°43'46.5° 0°34'22 6" 0°326 3" 0°0°20.6"
2 114°35'29.6" 11°27'33.0" 1°8'45.3" 0°6'52.5" 0°0'41.3"
3 171°533’14 . 4" 17°11°'19 4" 1°43°07.9" 0°10'18.8" 0°1'01.9"
4 229°1039.2" 22°35'05.9" 2°17'30.6" 0°13'45.1" 0°1'22.5"
l 3 286°28'44.0" 28°38'52.4" 2°51'33.2" 0°17'11.3" 0°1'43.1"
6 343°46"28.8" 34°22'38.9" 3°26’15.9" 0°20°37 .6~ 0°2'03.8"
7 401°4'13.6" 40°6'25.4" 4°0'38.5" 0°24'03.9" 0°2'24 4"
8 I 438°21'38.4" 45°50'11.8° 4°35'1.2° 0°27'30.1° 0°2'45.0"
9 . 515°39°43.3" 51°33'58.3" 5°9'23.8" 0°30°56 . 4" 0°3'05.6"

201
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Table B.4
CONSTANTS
VALUES RECIPROCALS

. 3.14150 26535 89703 L3 0.31830 08861 83701

x
% 1.57079 63267 84897 2 0.6366! 97723 67582

T
o 6.28318 53071 79586 2% 0.15915 49430 91895
? '9.86060 44010 89359 i, 0.10132 11836 42338

L 3

1
vV 1.77245 38509 05516 v 0.56418 95835 47756

[; 3
\3 1.25331 41373 15500 : 0.79788 45608 02865

. 1

, 5 74 —— .

!! o 2.50662 82746 31001 = 0.39804 22804 01433
¢ 2.71828 18284 59045 2 0.36787 94411 71442
e 7.38005 60980 30650 ei, 0.13533 52832 36613

1
Ve 1.64872 12707 00128 e 0.60653 06597 12633
. log 10° 0.43429 44819 03252 log. 10 2.30258 50929 94046
} g =32.174 ft/sec? =10.725 yds/sec? 1 radian =57.29577 95130 82321 degrees.

p.=.07513 Ibs/ft? = 002335 slugs/ft?
1 statute mile =5280 ft. 1 nautical mile =6080 ft.

1 degree =0.01745 32925 19943 radians.

The Speed of Sound

202

Temperature Speed of Sound Speed of Sound
C FT/SEC- MPH
‘ 0° 1088 742
' 20° 1129 770
100° 1266 863
500° 1814 1237
1000° : 2297 1566
|

e ——
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AIR SPEED - KNQTS
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204




—n—‘-_-_--nm--._-_.._‘_

—

(1)
2)

(3)
(4)
(5)
(6)

(1)
(8)

(9)

(10)
(11)

(12)

(14)
(15)
(16)

(17)

(18)

BIBLIOGRAPHY

Bliss, G. A.; “Mathematics for Exterior Ballistics,” John Wiley &
Sons, Inc.,, New York, 1944,

Fowler, R. H,, Gallop, E. G., Lock, C. N. H., Richmond, H, W.; “The
Aerodynamics of a Spinning Shell,” Phil. Trans. Royal Society of
London (A) Vol. 221, (1920) pp. 295-387.

Heayes, T. J.; “Elements of Ordnance,” John Wiley & Sons, Inc.,
New York, 1938, Chapter X.

Hermann, E. E.; “Exterior Ballistics,” U. S. Naval Institute, Annapo-
lis, Maryland, 1935.

Moulton, F. R.; “New Methods in Exterior Ballistics,” University of
Chicago Press, Chicago, 1926.

Nielsen, K. L. and Synge, J. L.; “On the Motion of & Spinning Shell,”
Quarterly of Applied Mathematies, Vol. IV, No. 3, October, 1946.
pp. 201-226.

Handelman, G. H.; “Aerodynamic Pursuit Curves for Overhead
Attacks,” Journal of the Franklin Institute, March, 1949.

Bonguer; “Sur de nouvelles courbes auxquelles on peut donner le nom
de liques de poursuite” (Novel Curves Known as Pursuit Curves),
Memoires de Math. et de Phys. de ’Academie Royale des Sciences
(1732), pp. 1-14.

Maupertius; “Sur les courbes de poursuite” (Pursuit Curves),
Memoires de Math.et de Phys. de ’Academie Royale des Sciences
(1732), pp. 15-117.

Teixeira, G.; “Obras sobre mathematica” (Pure Mathematics), Vol. 5
Coimbra (1909), pp. 254-258.

Loria, G.; “Ebene Kurven” (Two-Dimensional Curves), Second
Edition, Vol. 2, Leipzig and Berlin (1911), pp. 241-247.

Nobile, V.; “Sullo Studio intrensico delles curve di caccia”’ (Study on
the transition of a Pursuit Curve), Rend. Circ. Mat. Palermo, Vol. 20,
(1905), pp. 73-82. )

Mechler, E. A.; Russel, J. B.; Preston, M. G.; “The Absis for the
Optimum Aided Tracking Time Constant”; Journal 6f the Franklin
Institute, October, 1949.

Morse, P. M.; Kimball, G. E.; “Methods of Operations Research”;
OEG Report 54, Office of the Chief of Naval Operations, 7 May 1946.
Davidson, Martin; “The Gyroscope and Its Applications”; Hutchin-
son’s Scientific and Technical Publications; London, January, 1946.
Brand, Louis; “Vectorial Mechanics”; John Wiley & Sons, February,
1930.

Crdnance Pamphlet #649; “Theory and Operation of Bombsight
Mark XV”; (Unclassified) ; U. S. Navy Bureau of Ordnance, October,
1941.

Resser, J. B.; Newton, R. R.; Gross, G. L.; “Mathematical Theory

of Rocket Flight,” McGraw-Hili Book Company, Inc., New York,
1947,

205




NAVORD REPORT 1493  MATHEMATICAL THEORY OF AIRBORNE FC ]
DISTRIBUTION

Requests for copies of NAVORD REPORT 1493 should be submitted on
NAVEXOS 158, Stock Forms and Pubiications Requisition, through the
District Publications and Printing Office by which requestor is serviced.
Catalog of Naval Shore Activities, Edition No. 18:

List A2

Naval Material (5 copies) |
Naval Research (5 cepies) ) -
Industrial Relations (6 copies)

List A8
CNQ (5 copies)
Naval Records and Library (5 copies)
List A5
BuAer (1J copies)
BuPers (10 copies)
BuOrd (10 copies)
BuShips (2 copies)
BuSandA (2 copies)
List A6
(5 copies)

List B2

Senior Naval Member, Research & Development Board (2 copies)
Chief, Armed Forces Special Weapons Project (2 copies) 1

|

fsumn RN ] =3 !

(==

List B3 U
All (8 copies) -

List BS |
(2 copies)

List C1 ]

Aberdeen (2 copies)

Guided Missiles School — Fort Bliss, Tex. (3 copies)
General Staff College, Fort Leavenworth, Kans. (3 copies) ]
U. S. Army Field Forces, Ft. Monroe, Va. (3 copies) =
U. S. Army General Sch~o), Ft. Riley, Kans. (3 copies)
U. S. Military Academy, West Point (5 copies) ]

List C2 -

Air Material Center, Dayton, Ohio (3 copies)

Air Force Technical School, Keesler, Miss. (2 copies)
Tactical Air Command, Langley, Va. (2 copies) -
Air Command Staff School, Maxwell, Ala. (3 copies)
Offucwe Air Force Base, Nebr. (3 copies) ]
Air Tactical School, Panama City, Fla. (2 copies) 1

206




L——J [:—-—] [:-......._J

| S—

VISTRIBUTION

LT:

omes  umww pessan

Experiment and Test Stations (10 copies)
Naval Engiueering Experiment Station, Annapolis, Md.
David W. Taylor Model Basin, Carderock, Md.
Naval Avistion Ordnance Test Staticn, Chincoieague, Va.
Naval Proving Ground, Dahigren, Va.
Naval Ordnance Test Station, Inyokerr, China Lake, Calif.
Naval Air Development Center, Johnsville, Pa.
Navy Mine Countermeasures Station, Panama City, Fla.
Naval Air Test Center, Patuxent River, Md.
Naval Air Missile Test Center, Pt. Mugu, Port Hueneme, Calif.
Naval Unit, White Sands Proving Grounds, Las Cruces, N. Mex.

Laboratories (6 copies) )
Navy Undsrwater Sound Lab, Fort Trumbull, New London, Conn.
Naval Civil Eng. Resch and Eval Lab, Port Hueneme, Calif.

Special Devices Center, Office of Naval Research, Sands Point, Port
- Washington, L. I, N. Y.
Navy Electronics Laboratory, San Diege, Calif.
Naval Research Laboratory, Office of Naval Research, Anacostia,
Washington, D. C. )
Naval Ordnance Laboratory, White Oak, Md.

Schools (6 copies)
Naval Postgraduate School, Annapolis, Md.
Naval School General Line, Monterey, Caiif.
Naval Schoocl, Academy and College Preparatory, Newport, R. 1.
Marine Corps School, Quantico, Va.
Fleet Sonar School, San Diego, Calif.
Naval School Mine Warfare, Yorktown, Va.

" G5A, G5D, K5A, K5B, K5D, J60, J95 (all 5 copies) except NOPI (100 copies)

U. S. Army, Washington, D. C. (5 copies)
U. S. Air Feree, Washington, D. C. (10 copuex;
U. S. Bureau of Standards, Washington, D. C. (3 copies)

Commercial Activities having Navy Contracts (1 copy)

Franklin Institute, 20th and Benjamin Franklin Pkwy., Philadelphia,
Pa.

Specialties Ins., Skunks Misery Road, S;<<set, L. 1., N. Y.

M. ten Bosch, Inc., 80 Wheeler Ave., Pleasantville, N. Y.

Farrand Optical Co., Bronx Blvd. and E. 238th St., New York, N. Y.

Columbia Research & Developmeri{ _wep., 4608 Indianola Ave,
Columbus, Ohio

Librascope Inc., 1607 Flower St., Glendzle 1, Calif.

Kearfott Co., Inc., Little Falls, N. J.

Poitras & Taplin, 198 Highiand St., Hoiliston, Mass.

Jacobs Instrument Co., 4718 Bethesda Ave., Bethesda, Md.

Stavid Engineering, Inc., 312 Park Ave., Plainfield, N. J.

Arma Corp., 254 38th St., Brookiyn, N, Y.

207




NAVORD REPORT 1493 MATHEMATICAL THEORY OF AIRBORNE FC

American Hydromath Corp. (Attn. Mr. R. M. Kristal}, 145 West 57th
St., New York 19, N. Y.

Bendix Aviation Corp., 4855 4th Ave., Detroit 1, Mich.

Electric Indicator Co. (Attn. Mr. A. Block), Stamford, Conn.

Consolidated-Vultee Aircraft Corp., San Diego, Calif.

Emerson Electric Mfg. Co., 8100 Florissant Ave,, St. Louis 21, Mo.

Melpar, Inc. (Attn. Mr. Tom Meloy), 452 Swann Ave., Alexandria, Va.

Norden Laboratories Corp., 121 Westmoreland Ave., White Plains, N. Y.

Minnesota Electronic Corp., 47 West Water St., St. Paul, Minn.

10 Aug. 51/2M/1

UM MR VRN GEE D BN S e

Tr U.S. GOVERNMENT PRINTING OFFICE : C—1982

208




~— ARMED SERVICES TECKMICAL INFORMATION AGENCY

Reproducid by

DOCUMENT SERVICE CENTER

- a definitely related Government proc::rement ¢neration, the U.S,

"NOTICE: When Government or oti»~ drawings, specifications or
other data are used for any purpose ::her than in connection with

Government thereby incurs no respo- iibility, nor zny obligation
whatsoever; and the fact that the G »vernment may have formulated,
furnished, or in any way supplied the aid drawingi, specifications
or other data is not to be regarded *»; implication or ctherwise as
in any manner licensing the holder » any other person or corpora-
tion, or conveying any rights or perm:ssion to mamifacture, use or
seil any patented inventicn that may i: any way be related thereto.”

UN ‘ ED]]

. S mm
. .




STI-ATI 202 159 X UNCLASSIFIED (/EpsST 1@ /s
Burean of Ordnance, Washington, D, C,

THE MATHEMATICAL THEORY OF AIRBORNE FIRE

CONTROL, by Kaj L. Mielsen and James F, Heyda,

20 July 51, 208p incl illus, tables, NAVORD repreeny.,
1493,

UM RRWw

Ordnance (22) Fire control, Aircraft
=== Fire Control &

Bombing Systems (7) ,
(Copies obtainable from ASTIA ~DSC)

- - A it S
%'A»’"’f‘", [‘,',c’ o - 17 ‘£7< e

MICROFILM

UNCLA
NIIS, Auth: 415/)’/?56 /‘/f’ O”O 2 ;;?




